Tag Archives: servo motor encoder

China OEM Lk110BS0410-15 High Precision High Torque DC Motor with Encoder 1500PPR 48V 1000W BLDC Servo Motor 6.3n. M for Agv Fire Fighting Robot with Great quality

Product Description

LK110BS571-15

Product Overviews

 

 What is a Brushless DC motor (BLDC)?

A brushless DC motor (known as BLDC) is a permanent magnet synchronous electric motor which is driven by direct current (DC) electricity and it accomplishes electronically controlled commutation system (commutation is the process of producing rotational torque in the motor by changing phase currents through it at appropriate times) instead of a mechanically commutation system. BLDC motors are also referred as trapezoidal permanent magnet motors.

 

It has no mechanical commutator and associated problems

High efficiency due to the use of permanent magnet rotor

High speed of operation even in loaded and unloaded conditions due to the absence of brushes that limits the speed

Smaller motor geometry and lighter in weight than both brushed type DC and induction AC motors

Long life as no inspection and maintenance is required for commutator system

Higher dynamic response due to low inertia and carrying windings in the stator

Less electromagnetic interference

Quite operation (or low noise) due to absence of brushes

 

a. High Torque to inertia ratio&up to 25000Nm/kgm²

b. Fast dynamic response *time constant <20ms

c. Wide speed adjusting&feedback up to 1000:1

d. Steady speed precision up to 0.5%

e. High overload,2Mn/30s,3.5N.m/10s

f. Small volume and light

g. Silent,the lowest noise is only 45dB(A)

h. Protected with IP65,Class F insulation

Product Uses

  

Model   110BS571-15
Volt V 48V
Power W 1000W
Rated Torque N.m 6.3
Rated Speed r/min 1500
Rated Current A 40
Peak Torque N.m 16.6
Line Resistance Ω 0.6
Rotor Constant mH 0.28
Torque Constant Nm/A 0.17
Back EMF Constant v/kr/min 17.3
Rotor Inertia Kg.m2×10-6 418
Mechanical Time Constant ms 0.56
Electrical Time Constant ms 0.8
Encoder ppr 2500
Weight KG 8

 

 

Brushless dc servo motor Diemsion

 

Color Red Green Gray Yellow Brown Bule Orange
Output 5V A B C U V W
Color Black White/Green White/Gray White/Yellow White/Brown White/Bule White/Orange
Output 0V A- B- C- U- V- W-

 

Encoder Infronation

 

high torque brushless motor with encoder 48v 1000w brushless dc servo motor

Detailed Images

 

 

Related Products

 

Model Volt Power Rated speed Rated Current Rated Torque Peak Torque Encoder
Unit V W r/min A N.m N.m PPR
LK60BS5711-30 24 100 3000 5.4 0.318 0.95 2500
LK60BS5712-30 24 200 3000 10.4 0.63 1.89 2500
LK80BS5712-15 12 200 1500 22 1.27 3.8 2500
LK80BS5712-15 24 200 1500 9.4 1.27 3.8 2500
LK80BS0402-15 48 200 1500 4.7 1.27 3.8 2500
LK80BS5714-15 12 400 1500 40 2.55 7.65 2500
LK80BS5714-15 24 400 1500 21.3 2.55 7.65 2500
LK80BS0404-15 48 400 1500 10.6 2.55 7.65 2500
LK80BS5714-30 24 400 3000 18.8 1.27 3.8 2500
LK80BS0404-30 48 400 3000 9.4 1.27 3.8 2500
LK110BS5717-15 24 750 1500 44 4.7 17 2500
LK110BS0408-15 48 800 1500 22 5 17.9 2500
LK110BS5710-15 24 1000 1500 52 6.3 22 2500
LK110BS571-15 48 1000 1500 28 6.3 22 2500
LK110BS571-15 48 1500 1500 37.5 9.5 28 2500
LK110BS0420-25 48 2000 2500 55 9.6 28 2500
LK130BS5715-13 24 500 1300 27 3.18 9.1 2500
LK130BS571-15 48 1000 1500 28 6.3 22 2500
LK130BS571-15 48 1500 1500 37.5 9.5 28 2500
LK130BS0420-15 48 2000 1500 55 12.7 37 2500
LK130BS0430-15 48 3000 1500 83 19.1 57 2500
LK130BS0430-30 48 3000 3000 83 9.5 28 2500

HangZhou CHINAMFG Electronic Technology Co., Ltd. Is mainly engaged in high and low voltage permanent magnet DC motors, high and low voltage brushless DC motors, high and low voltage AC and DC servo motors and their supporting high and low voltage DC motor drivers, AC and DC servo motor drivers and other high-quality products in the industrial field, At present, the agricultural machinery autonomous driving steering wheel steering motor is well sold in the national market, and the customer feedback is also very good. The dual-channel brushless servo motor drive is very well used in the AGV robot industry. We can provide supporting equipment such as servo motor or Hall brushless motor, dual-channel controller, and model aircraft remote control for crawler robots, and provide technology for selection and debugging. Support.

At present, the high-quality products and technologies provided by the company serve many enterprise equipment and assembly lines, providing huge economic benefits for customers and creating benefits for the society. The company always adheres to the business philosophy of “quality-oriented, service-oriented, and CHINAMFG cooperation”, deeply understands user needs, continuously improves product quality and customer satisfaction, and achieves long-term cooperation between customers, service customers, and CHINAMFG cooperation

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Brand: Lulanjiu
Product Name: BLDC Motor

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

Are there common issues or challenges associated with servo motor systems, and how can they be addressed?

Servo motor systems are widely used in various applications, but they can encounter common issues or challenges that affect their performance and reliability. Let’s explore some of these issues and discuss potential solutions:

1. Positioning and Tracking Errors:

One common challenge in servo motor systems is positioning and tracking errors. These errors can occur due to factors such as mechanical backlash, encoder resolution limitations, or disturbances in the system. To address this issue, careful calibration and tuning of the servo control system are necessary. This includes adjusting feedback gains, implementing feedback filtering techniques, and utilizing advanced control algorithms to improve the system’s accuracy and minimize errors. Additionally, employing high-resolution encoders and backlash compensation mechanisms can help enhance the positioning and tracking performance.

2. Vibration and Resonance:

Vibration and resonance can impact the performance of servo motor systems, leading to reduced accuracy and stability. These issues can arise from mechanical resonances within the system or external disturbances. To mitigate vibration and resonance problems, it is crucial to analyze the system’s dynamics and identify critical resonant frequencies. Implementing vibration dampening techniques such as mechanical isolation, using vibration-absorbing materials, or employing active vibration control methods can help minimize the effect of vibrations and improve the system’s performance.

3. Overheating and Thermal Management:

Servo motors can generate heat during operation, and inadequate thermal management can lead to overheating and potential performance degradation. To address this issue, proper cooling and thermal management techniques should be employed. This may involve using heat sinks, fans, or liquid cooling systems to dissipate heat efficiently. Ensuring adequate ventilation and airflow around the motor and avoiding excessive current or overloading can also help prevent overheating. Monitoring the motor’s temperature and implementing temperature protection mechanisms can further safeguard the motor from thermal damage.

4. Electrical Noise and Interference:

Electrical noise and interference can affect the performance and reliability of servo motor systems. These issues can arise from electromagnetic interference (EMI) or radio frequency interference (RFI) from nearby equipment or electrical sources. To mitigate electrical noise, proper shielding and grounding techniques should be employed. Using shielded cables, ferrite cores, and grounding the motor and control system can help minimize the impact of noise and interference. Additionally, employing filtering techniques and surge protection devices can further improve system robustness against electrical disturbances.

5. System Integration and Compatibility:

Integrating a servo motor system into a larger control system or automation setup can present challenges in terms of compatibility and communication. Ensuring proper compatibility between the servo motor and the control system is crucial. This involves selecting appropriate communication protocols, such as EtherCAT or Modbus, and ensuring compatibility with the control signals and interfaces. Employing standardized communication interfaces and protocols can facilitate seamless integration and interoperability. Additionally, thorough testing and verification of the system’s compatibility before deployment can help identify and address any integration issues.

6. Maintenance and Service:

Maintenance and service requirements are important considerations for servo motor systems. Regular maintenance, including lubrication, inspection, and cleaning, can help prevent issues related to wear and tear. Following manufacturer-recommended maintenance schedules and procedures is essential to ensure the longevity and optimal performance of the motor. In case of any malfunctions or failures, having access to technical support from the manufacturer or trained service personnel can help diagnose and address problems effectively.

By being aware of these common issues and challenges associated with servo motor systems and implementing appropriate solutions, it is possible to enhance the performance, reliability, and lifespan of the servo motor system. Regular monitoring, proactive maintenance, and continuous improvement can contribute to optimizing the overall operation and efficiency of the system.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China OEM Lk110BS0410-15 High Precision High Torque DC Motor with Encoder 1500PPR 48V 1000W BLDC Servo Motor 6.3n. M for Agv Fire Fighting Robot   with Great quality China OEM Lk110BS0410-15 High Precision High Torque DC Motor with Encoder 1500PPR 48V 1000W BLDC Servo Motor 6.3n. M for Agv Fire Fighting Robot   with Great quality
editor by CX 2024-03-05

China Standard High Torque 219mm 1800W 3000rpm 6nm 18nm 220V AC Servo Motor and Driver with 2500PPR Encoder vacuum pump diy

Product Description

High Torque 219mm 1800W 3000RPM 6NM 18NM 220V Ac Servo Motor And Driver With 2500PPR Encoder

SZGH-11180DC(H)   is 1800W servo motor ,optimizing design, compact, beautiful contour,  long-term continuous working  in rated working mode and economic type 

Packing list : 

1) SZGH-11180DC(H)  1.8kw servo motor -1pcs 

2) SZGH-SD2026E  220v servo driver – 1pcs 

3) SZGH1MX-5M  5meter motor cables -1pcs 

4) SZGH1EX-5M   5 meter encoder cables -1 pcs 

5) Manual  -1pcs 

Pls tell us at first time when you need : 

1) Brake motor 

2) 2500PPR encoder  

3) long cables 

Product Description

 

 

 

Rated Power 

1800W

Rated torque 

6NM

Rated Speed  3000RPM 

Rated Curret 

6A 

Rated Voltage 

220V

Encoder 

17bit   

 

 

Description of  Driver 

Input  Power : Single Three Phase AC220V-15%~+10% SO/60HZ

Control model : 

0: Position Control;  1:Speed Control;  

2: Torque Control; 3:Position/Speed Control;

4·PositionTorque Control: 5:Speed Torque Control

Protective Function : Over-speed Over-voltage Under-voltage Over-current OverloadEncoder Error/ Control Power Eror/ Position Offset Eror

Driver Load : Less than 3times of rotor inertia 

Display : 5 bits LED indicator display  4 Operate keys

Communication : RS485

Position Control : Input Model , Electric Ratio 

 

 

 

Product Parameters

 

Certifications

Packaging & Shipping

 

1.Industrial packing: plastic bag +foam boxes+ carton +wooden pallets 2.Commercial packing: plastic bag+ foam boxes + carton

3.As the clients requirement

Delivery Detail: Normally ready goods and stock within 2- 5days

 

Company Profile

HangZhou CHINAMFG Automation CO.,LTD (Formerly known as ‘HangZhou CHINAMFG Automation  Co.,Limited(Built in 19 November 2571)’) is 1 of the leading CNC & automatic company in China, specialized in designing projects, marketing, and oversea trading, having extensive experience in CNC package solution, Our focus has been on providing the high quality of Industrial robot arm   Lathe CNC system, Milling CNC system, Engraving CNC system, Grinding & router CNC system, Motor & driver, Spindle servo motor & driver, Gear reducer. 

SZGH’ products have been in working with a wide variety of CNC machinery and automatic processing equipment with high performance and good precision, stably. We have now established a reliable structure , our experienced engineers and technicians are able to provide professional consultancy and offer you most suitable CNC application solution.

Our strict quality control measures guarantee excellent reliability and high standard of quality. Utilizing advanced CNC machinery to test every product, 100 percent inspection is made before packaging and shipment. Moreover, We also offer flexible lead times to support your business.

We have a large number of customers across Asia, America, the Middle East, Europe, South America, and Africa. Specially we already built own business corporate group in Middle East market.

 

Our Advantages

 

After Sales Service

Best & Professional after- sales supports 

Our company have very professional engineers teams ;

We can provide the professional after -sales service to our all clients ;

Here is our engineer Mike solved the problems for our customer ;

Best supports !! Quicly reply !!

Buy at ease , use at ease !!!

FAQ

Q: Do you support customized manufacturing?
A: Yes,we can customized manufacturing according to customer’s requirment. We support to OEM your own company display interface
and logo.

Q: How long is your delivery time?
A: Generally it is 3-5 days if the goods are in stock. or it is 5-10 days if the goods are not in stock, it is according to
quantity.10-20 days if customized manufacturing.

Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample with sample price.
Q: What is your terms of payment ?
A: Payment=1000USD, 70% T/T in advance ,balance before shippment.

If you have another question, pls feel free to contact us as below

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Explosion-Proof Type
Number of Poles: 4
Customization:
Available

|

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

What factors should be considered when selecting a servo motor for a specific application?

When selecting a servo motor for a specific application, several factors need to be considered. These factors help ensure that the chosen servo motor meets the requirements and performs optimally in the intended application. Here are some key factors to consider:

1. Torque and Power Requirements:

One of the primary considerations is the torque and power requirements of the application. The servo motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. Additionally, the power rating of the motor should match the power supply available in the application. It is essential to evaluate the torque-speed characteristics of the servo motor to ensure it can deliver the required performance.

2. Speed and Acceleration:

The required speed and acceleration capabilities of the servo motor should align with the application’s needs. Different applications have varying speed and acceleration requirements, and the servo motor should be able to meet these demands. It is crucial to consider both the maximum speed that the motor can achieve and the time it takes to accelerate or decelerate to specific speeds. Evaluating the servo motor’s speed-torque characteristics and acceleration capabilities is necessary for selecting the right motor.

3. Positioning Accuracy and Repeatability:

The desired positioning accuracy and repeatability of the application play a significant role in servo motor selection. If precise positioning is crucial, a servo motor with high accuracy and low positioning errors should be chosen. The feedback mechanism, such as encoders or resolvers, should provide the required resolution to achieve the desired accuracy. Repeatability, the ability to consistently reach the same position, should also be considered, especially in applications where repetitive movements are necessary.

4. Environmental Conditions:

The environmental conditions in which the servo motor will operate should be taken into account. Factors such as temperature extremes, humidity, dust, and vibration can affect the motor’s performance and lifespan. In harsh environments, it may be necessary to choose a servo motor with appropriate protection ratings, such as IP (Ingress Protection) ratings, to ensure reliable operation and longevity.

5. Control System Compatibility:

The compatibility of the servo motor with the control system used in the application is crucial. The motor should be compatible with the control signals and communication protocols employed in the system. This includes considerations such as voltage compatibility, control signal types (analog, digital, pulse), and communication interfaces (such as Ethernet, CAN, or Modbus). Ensuring compatibility will facilitate seamless integration and efficient control of the servo motor within the application.

6. Size and Weight Constraints:

The physical size and weight limitations of the application should be considered when selecting a servo motor. The motor’s dimensions should fit within the available space, and its weight should not exceed the application’s weight capacity. Compact and lightweight servo motors may be preferred in applications where space is limited or weight is a critical factor.

7. Cost Considerations:

The cost of the servo motor and its overall value for the application should be evaluated. It is essential to consider the initial purchase cost as well as the long-term maintenance and operational costs. While cost is a factor, it should not be the sole determining factor, as compromising on quality or performance may lead to suboptimal results.

By considering these factors, one can make an informed decision when selecting a servo motor for a specific application. It is recommended to consult with manufacturers or experts in the field to ensure the chosen servo motor meets the application’s requirements and provides reliable and efficient performance.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China Standard High Torque 219mm 1800W 3000rpm 6nm 18nm 220V AC Servo Motor and Driver with 2500PPR Encoder   vacuum pump diyChina Standard High Torque 219mm 1800W 3000rpm 6nm 18nm 220V AC Servo Motor and Driver with 2500PPR Encoder   vacuum pump diy
editor by CX 2024-03-01

China wholesaler Servo Motor Encoder Absolute Interface High Cost Performance 48mm External Diameter and 8mm Hole 9mm Hole vacuum pump ac

Product Description

 

Packaging & Delivery

Package size per unit product

10.00cm * 10.00cm * 10.00cm

Gross weight per unit product

0.100kg

Product Description

 

ADK-SV48 Series  

ASIC devices are used inside, with high reliability, long life and strong anti-interference. The taper shaft design link is not easy to slip, the installation volume is small, the resolution range is wide, no signal adjustment required, with A, B, Z, U, V, W six-channel signal output, and can be connected to standard line drives (26L- S31) RS422, and can provide 12 output signals, compatible with TTL

 

Model No.:ADK-SV-XXXX

Resolution:MAX 23bit

interface:A,B,Z,U,V,W

External diameter:48mm

Shaft diameter:6,8,10mm

Supply Voltage: 5v,8-29v;
 

 

 

Product Parameters

name ADK SV48 series servo motor rotary encoder A,B,Z,U,V,W max 23bit replace Omron Kubler Autonics Baumer
resolute max 23bit
Output format voltage,NPN/PNP,Xihu (West Lake) Dis.ne,
Supply Voltage 5v, 8-29v
external diameter 48mm
max turn quantity 4096
shaft diameter 6,8,10mm
Protection level IP54~IP67
Work temperature -20~85ºC
Certification ISO9001,ROHS,CE,SGS,BV

 

 

Detailed Photos

Certifications

Company Profile

Idencoder is a professional manufacturer of rotary encoders and has provided various encoder solutions for hundreds of companies at home and abroad. HangZhou CHINAMFG is committed to the development, production and sales of various high-performance industrial rotary encoders.
It has an independent R&D team, with companies and offices in HangZhou, HangZhou, and HangZhou.
Certification:ISO9001,SGS,ROHS,CE,BV and etc.
Recognized as a national high-tech enterprise
Our slogan:make the best encoder in China.
To this end, we invest a lot of money and energy in research and development every year. More than 50 patents have been obtained, covering the software and hardware fields such as incremental encoders, absolute encoders, programmable encoders, servo motor encoders, industrial Ethernet encoders, and cable displacement encoders

 

Applications

General incremental encoder applied to  automation control,measurement,robot,X-Ywork,printing&packing,textile printing and dyeing and etc.high reliable,long service life,strong anti-interference capability.   Wide temperature range and IP grade can be customized

Packaging & Shipping

The rotary encoder is packed in standard export packaging or as required by buyers
Delivery Time
Shipped within 7 days after full payment by DHL

FAQ

1) How to select an encoder?
Before ordering encoders, you could clearly know which type of encoder you may need.
There are incremental encoder and absolute encoder, after this, our sale-service department would better work for you.
2) What specifications are requested before order an encoder?
Encoder type—————-solid shaft or hollow shaft encoder
External Diameter———-Min 25mm, MAX 100mm
Shaft Diameter—————Min shaft 3mm, Max shaft 45mm
Phase & Resolution———Min 20ppr, MAX 50000ppr
Circuit Output Mode——-you could choose NPN,PNP,Voltage, Push-pull,Line driver, etc
Power Supply Voltage——DC5V-30V
3) How to choose a right encoder by yourself ?
Exact Specification Description
Check The Installation Dimensions
Contact Supplier to get more details
4) How many pieces to start ?
The MOQ is 20pcs .Less quantity is also ok but the freight  is  higher.
5) Why choose “Gertech” Brand Encoder?
All encoders are designed and developed by our own engineer team since year 2004,
and most of the electronic component of encoders are imported from overseas market.
Never let our quality down,because quality is our culture.
6) How long is your lead time?
Short lead time—-3 days for samples,7-10days for mass production
7) what is your guarantee policy?
1year warranty and life-long technical support
8)What are the benefit if we become your agency ?
Special prices, Market protection and supporting.
9)What is the process to become Gertech agency?
Please send us enquiry,we will contact you as soon as possible.
10)What is your production capacity?
We produce 5000pcs every week.Now we are building second phrase production line.

 

exhibition

 

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Adjust Speed
Number of Stator: Can Available
Species: Can Available
Rotor Structure: Can Available
Casing Protection: Closed Type
Customization:
Available

|

servo motor

Are there common issues or challenges associated with servo motor systems, and how can they be addressed?

Servo motor systems are widely used in various applications, but they can encounter common issues or challenges that affect their performance and reliability. Let’s explore some of these issues and discuss potential solutions:

1. Positioning and Tracking Errors:

One common challenge in servo motor systems is positioning and tracking errors. These errors can occur due to factors such as mechanical backlash, encoder resolution limitations, or disturbances in the system. To address this issue, careful calibration and tuning of the servo control system are necessary. This includes adjusting feedback gains, implementing feedback filtering techniques, and utilizing advanced control algorithms to improve the system’s accuracy and minimize errors. Additionally, employing high-resolution encoders and backlash compensation mechanisms can help enhance the positioning and tracking performance.

2. Vibration and Resonance:

Vibration and resonance can impact the performance of servo motor systems, leading to reduced accuracy and stability. These issues can arise from mechanical resonances within the system or external disturbances. To mitigate vibration and resonance problems, it is crucial to analyze the system’s dynamics and identify critical resonant frequencies. Implementing vibration dampening techniques such as mechanical isolation, using vibration-absorbing materials, or employing active vibration control methods can help minimize the effect of vibrations and improve the system’s performance.

3. Overheating and Thermal Management:

Servo motors can generate heat during operation, and inadequate thermal management can lead to overheating and potential performance degradation. To address this issue, proper cooling and thermal management techniques should be employed. This may involve using heat sinks, fans, or liquid cooling systems to dissipate heat efficiently. Ensuring adequate ventilation and airflow around the motor and avoiding excessive current or overloading can also help prevent overheating. Monitoring the motor’s temperature and implementing temperature protection mechanisms can further safeguard the motor from thermal damage.

4. Electrical Noise and Interference:

Electrical noise and interference can affect the performance and reliability of servo motor systems. These issues can arise from electromagnetic interference (EMI) or radio frequency interference (RFI) from nearby equipment or electrical sources. To mitigate electrical noise, proper shielding and grounding techniques should be employed. Using shielded cables, ferrite cores, and grounding the motor and control system can help minimize the impact of noise and interference. Additionally, employing filtering techniques and surge protection devices can further improve system robustness against electrical disturbances.

5. System Integration and Compatibility:

Integrating a servo motor system into a larger control system or automation setup can present challenges in terms of compatibility and communication. Ensuring proper compatibility between the servo motor and the control system is crucial. This involves selecting appropriate communication protocols, such as EtherCAT or Modbus, and ensuring compatibility with the control signals and interfaces. Employing standardized communication interfaces and protocols can facilitate seamless integration and interoperability. Additionally, thorough testing and verification of the system’s compatibility before deployment can help identify and address any integration issues.

6. Maintenance and Service:

Maintenance and service requirements are important considerations for servo motor systems. Regular maintenance, including lubrication, inspection, and cleaning, can help prevent issues related to wear and tear. Following manufacturer-recommended maintenance schedules and procedures is essential to ensure the longevity and optimal performance of the motor. In case of any malfunctions or failures, having access to technical support from the manufacturer or trained service personnel can help diagnose and address problems effectively.

By being aware of these common issues and challenges associated with servo motor systems and implementing appropriate solutions, it is possible to enhance the performance, reliability, and lifespan of the servo motor system. Regular monitoring, proactive maintenance, and continuous improvement can contribute to optimizing the overall operation and efficiency of the system.

servo motor

What factors should be considered when selecting a servo motor for a specific application?

When selecting a servo motor for a specific application, several factors need to be considered. These factors help ensure that the chosen servo motor meets the requirements and performs optimally in the intended application. Here are some key factors to consider:

1. Torque and Power Requirements:

One of the primary considerations is the torque and power requirements of the application. The servo motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. Additionally, the power rating of the motor should match the power supply available in the application. It is essential to evaluate the torque-speed characteristics of the servo motor to ensure it can deliver the required performance.

2. Speed and Acceleration:

The required speed and acceleration capabilities of the servo motor should align with the application’s needs. Different applications have varying speed and acceleration requirements, and the servo motor should be able to meet these demands. It is crucial to consider both the maximum speed that the motor can achieve and the time it takes to accelerate or decelerate to specific speeds. Evaluating the servo motor’s speed-torque characteristics and acceleration capabilities is necessary for selecting the right motor.

3. Positioning Accuracy and Repeatability:

The desired positioning accuracy and repeatability of the application play a significant role in servo motor selection. If precise positioning is crucial, a servo motor with high accuracy and low positioning errors should be chosen. The feedback mechanism, such as encoders or resolvers, should provide the required resolution to achieve the desired accuracy. Repeatability, the ability to consistently reach the same position, should also be considered, especially in applications where repetitive movements are necessary.

4. Environmental Conditions:

The environmental conditions in which the servo motor will operate should be taken into account. Factors such as temperature extremes, humidity, dust, and vibration can affect the motor’s performance and lifespan. In harsh environments, it may be necessary to choose a servo motor with appropriate protection ratings, such as IP (Ingress Protection) ratings, to ensure reliable operation and longevity.

5. Control System Compatibility:

The compatibility of the servo motor with the control system used in the application is crucial. The motor should be compatible with the control signals and communication protocols employed in the system. This includes considerations such as voltage compatibility, control signal types (analog, digital, pulse), and communication interfaces (such as Ethernet, CAN, or Modbus). Ensuring compatibility will facilitate seamless integration and efficient control of the servo motor within the application.

6. Size and Weight Constraints:

The physical size and weight limitations of the application should be considered when selecting a servo motor. The motor’s dimensions should fit within the available space, and its weight should not exceed the application’s weight capacity. Compact and lightweight servo motors may be preferred in applications where space is limited or weight is a critical factor.

7. Cost Considerations:

The cost of the servo motor and its overall value for the application should be evaluated. It is essential to consider the initial purchase cost as well as the long-term maintenance and operational costs. While cost is a factor, it should not be the sole determining factor, as compromising on quality or performance may lead to suboptimal results.

By considering these factors, one can make an informed decision when selecting a servo motor for a specific application. It is recommended to consult with manufacturers or experts in the field to ensure the chosen servo motor meets the application’s requirements and provides reliable and efficient performance.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China wholesaler Servo Motor Encoder Absolute Interface High Cost Performance 48mm External Diameter and 8mm Hole 9mm Hole   vacuum pump acChina wholesaler Servo Motor Encoder Absolute Interface High Cost Performance 48mm External Diameter and 8mm Hole 9mm Hole   vacuum pump ac
editor by CX 2024-02-26

China supplier High Speed Low Rpm Permanent Magnet 12V 24V 48V Micro Small Brushless DC Gear Reduction Servo Electric Motor with Encoder vacuum pump booster

Product Description

High Speed Low Rpm Permanent Magnet 12V 24V 48V Micro Small Brushless DC Gear Reduction Servo Electric Motor with Encoder

 Product Application
(IE3/IE2/IE1) Ye3-80m1-2 (0.75kW) 3phase AC Induction Electric Motor CCC CE for Pump Fans Centrifugal Machines OEM ODM Obm 220V-660V 2 P Ultra-High Effi Motor  are a fully closed, self-fan cold mouse cage three-phase asynchronous motor manufactured with new materials, new techniques, and optimized design, have high efficiency, high starting torque, low noise, more reasonable structure, and cooling conditions mature. This series of motors for general purpose three-phase asynchronous motors. It can be used to drive a variety of general mechanical equipment, such as compressors, fans, pumps, and other mechanical equipment, but also in petroleum, chemical, pharmaceutical, mining, and other fields.

Type Amps Watts(HP) rmp Eff.% Cos.fi Tsn/In Isn/In Tmax/Tn
YE3-80M1-2 1.7 1.1 2880 80.7 0.82 2.3 7 2.3
YE3-80M2-2 2.4 1.5 2880 82.7 0.83 2.2 7.3 2.3
YE3-90S-2 3.2 2 2895 84.2 0.84 2.2 7.6 2.3
YE3-90L-2 4.6 3 2895 85.9 0.85 2.2 7.6 2.3
YE3-100L-2 6 4 2995 87.1 0.87 2.2 7.8 2.3
YE3-112M-2 7.8 5.5 2905 88.1 0.88 2.2 8.3 2.3
YE3-132S1-2 10.6 7.5 2930 89.2 0.88 2 8.3 2.3
YE3-132S2-2 14.4 10 2930 90.1 0.88 2 7.9 2.3
YE3-160M1-2 20.6 15 2945 91.2 0.89 2 8.1 2.3
YE3-160M2-2 27.9 20 2945 91.9 0.89 2 8.1 2.3
YE3-160L-2 34.2 25 2945 92.4 0.89 2 8.2 2.3
YE3-180M-2 40.5 30 2960 92.7 0.89 2 8.2 2.3
YE3-200L1-2 54.9 40 2955 93.3 0.89 2 7.6 2.3
YE3-200L2-2 67.4 50 2955 93.7 0.89 2 7.6 2.3
YE3-225M-2 80.8 60 2965 94 0.9 2 7.7 2.3
YE3-250M-2 98.5 75 2970 94.3 0.9 2 7.7 2.3
YE3-280S-2 133.7 100 2975 94.7 0.8 1.8 7.1 2.3
YE3-280M-2 159.9 120 2975 95 0.9 1.8 7.1 2.3

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

What factors should be considered when selecting a servo motor for a specific application?

When selecting a servo motor for a specific application, several factors need to be considered. These factors help ensure that the chosen servo motor meets the requirements and performs optimally in the intended application. Here are some key factors to consider:

1. Torque and Power Requirements:

One of the primary considerations is the torque and power requirements of the application. The servo motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. Additionally, the power rating of the motor should match the power supply available in the application. It is essential to evaluate the torque-speed characteristics of the servo motor to ensure it can deliver the required performance.

2. Speed and Acceleration:

The required speed and acceleration capabilities of the servo motor should align with the application’s needs. Different applications have varying speed and acceleration requirements, and the servo motor should be able to meet these demands. It is crucial to consider both the maximum speed that the motor can achieve and the time it takes to accelerate or decelerate to specific speeds. Evaluating the servo motor’s speed-torque characteristics and acceleration capabilities is necessary for selecting the right motor.

3. Positioning Accuracy and Repeatability:

The desired positioning accuracy and repeatability of the application play a significant role in servo motor selection. If precise positioning is crucial, a servo motor with high accuracy and low positioning errors should be chosen. The feedback mechanism, such as encoders or resolvers, should provide the required resolution to achieve the desired accuracy. Repeatability, the ability to consistently reach the same position, should also be considered, especially in applications where repetitive movements are necessary.

4. Environmental Conditions:

The environmental conditions in which the servo motor will operate should be taken into account. Factors such as temperature extremes, humidity, dust, and vibration can affect the motor’s performance and lifespan. In harsh environments, it may be necessary to choose a servo motor with appropriate protection ratings, such as IP (Ingress Protection) ratings, to ensure reliable operation and longevity.

5. Control System Compatibility:

The compatibility of the servo motor with the control system used in the application is crucial. The motor should be compatible with the control signals and communication protocols employed in the system. This includes considerations such as voltage compatibility, control signal types (analog, digital, pulse), and communication interfaces (such as Ethernet, CAN, or Modbus). Ensuring compatibility will facilitate seamless integration and efficient control of the servo motor within the application.

6. Size and Weight Constraints:

The physical size and weight limitations of the application should be considered when selecting a servo motor. The motor’s dimensions should fit within the available space, and its weight should not exceed the application’s weight capacity. Compact and lightweight servo motors may be preferred in applications where space is limited or weight is a critical factor.

7. Cost Considerations:

The cost of the servo motor and its overall value for the application should be evaluated. It is essential to consider the initial purchase cost as well as the long-term maintenance and operational costs. While cost is a factor, it should not be the sole determining factor, as compromising on quality or performance may lead to suboptimal results.

By considering these factors, one can make an informed decision when selecting a servo motor for a specific application. It is recommended to consult with manufacturers or experts in the field to ensure the chosen servo motor meets the application’s requirements and provides reliable and efficient performance.

servo motor

How does feedback control work in a servo motor system?

In a servo motor system, feedback control plays a crucial role in achieving precise control over the motor’s position, speed, and acceleration. The feedback control loop consists of several components that work together to continuously monitor and adjust the motor’s behavior based on the desired and actual position information. Here’s an overview of how feedback control works in a servo motor system:

1. Position Reference:

The servo motor system starts with a position reference or a desired position. This can be specified by a user or a control system, depending on the application requirements. The position reference represents the target position that the servo motor needs to reach and maintain.

2. Feedback Sensor:

A feedback sensor, such as an encoder or resolver, is attached to the servo motor’s shaft. The purpose of the feedback sensor is to continuously measure the motor’s actual position and provide feedback to the control system. The sensor generates signals that indicate the motor’s current position, allowing the control system to compare it with the desired position.

3. Control System:

The control system receives the position reference and the feedback signals from the sensor. It processes this information to determine the motor’s current position error, which is the difference between the desired position and the actual position. The control system calculates the required adjustments to minimize this position error and bring the motor closer to the desired position.

4. Controller:

The controller is a key component of the feedback control loop. It receives the position error from the control system and generates control signals that govern the motor’s behavior. The controller adjusts the motor’s inputs, such as voltage or current, based on the position error and control algorithm. The control algorithm can be implemented using various techniques, such as proportional-integral-derivative (PID) control, which adjusts the motor’s inputs based on the current error, the integral of past errors, and the rate of change of errors.

5. Motor Drive:

The control signals generated by the controller are sent to the motor drive unit, which amplifies and converts these signals into appropriate voltage or current levels. The motor drive unit provides the necessary power and control signals to the servo motor to initiate the desired motion. The drive unit adjusts the motor’s inputs based on the control signals to achieve the desired position, speed, and acceleration specified by the control system.

6. Motor Response:

As the motor receives the adjusted inputs from the motor drive, it starts to rotate and move towards the desired position. The motor’s response is continually monitored by the feedback sensor, which measures the actual position in real-time.

7. Feedback Comparison:

The feedback sensor compares the actual position with the desired position. If there is any deviation, the sensor generates feedback signals reflecting the discrepancy between the desired and actual positions. These signals are fed back to the control system, allowing it to recalculate the position error and generate updated control signals to further adjust the motor’s behavior.

This feedback loop continues to operate in a continuous cycle, with the control system adjusting the motor’s inputs based on the feedback information. As a result, the servo motor can accurately track and maintain the desired position, compensating for any disturbances or variations that may occur during operation.

In summary, feedback control in a servo motor system involves continuously comparing the desired position with the actual position using a feedback sensor. The control system processes this position error and generates control signals, which are converted and amplified by the motor drive unit to drive the motor. The motor’s response is monitored by the feedback sensor, and any discrepancies are fed back to the control system, enabling it to make further adjustments. This closed-loop control mechanism ensures precise positioning and accurate control of the servo motor.

China supplier High Speed Low Rpm Permanent Magnet 12V 24V 48V Micro Small Brushless DC Gear Reduction Servo Electric Motor with Encoder   vacuum pump booster	China supplier High Speed Low Rpm Permanent Magnet 12V 24V 48V Micro Small Brushless DC Gear Reduction Servo Electric Motor with Encoder   vacuum pump booster
editor by CX 2024-02-23

China best Good Price 160W Drive Wheel Use Servo Motor with Hall Encoder wholesaler

Product Description

Product Description

HangZhou K-Easy Automation Co.,Limited is a professional manufacturer, specialize in R&D And production of AC drives. We have built up a comprehensive product family. Frequency inverters’ power covers the range from 0.4 to 630kW, and voltage range is between 220V and 480V. More than inverters are running smoothly 300, 000 units at different industrial sites.

 

  • The response frequency is up to 1.5KHz, which is especially suitable for applications requiring high-speed response;

  • Driver menu, control interface, parameter modification and writing operation are consistent with CHINAMFG A5 series servo driver;

  • The encoder interface of A-type servo driver is consistent with CHINAMFG A5 series servo driver, and it can directly operate with CHINAMFG A5 and A6 servo motors;

  • The driver can directly drive the direct drive motor, and can support up to 23 bit absolute encoder;

  • It is provided with electronic cam special machine and internal position special machine;

  • The driver is currently used in automation equipment such as manipulator, loading and unloading, winding machine, die-cutting machine, 3C processing, fine carving, textile, SCARA robot, tensile machine, capping machine, labeling machine, etc.

Product Parameters

Performance K-Drive
Applicable motors Asynchronous /synchronous motors
Starting torque 0.5Hz, 180% (sensor-less vector control) 0Hz, 200% (closed-loop vector control)
Speed adjustable range 1:200 (SVC), 1:1000 (VC)
Ambient temperature (no derating required) -10-50ºC (for most of the models)
Rated input voltage 208VAC-480VAC
Communication Modbus RTU//ASCII Profibus-DP, CANopen, etc.
Position control (fixed length, or angular positioning)
Field weakening control
Autotune online Online & Offline
Short-time ramp-up No trip
Customized features (software and/or hardware) Procurable with rich experience

Product Features

Company Profile

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: High-performance Transducer, Three Phase Transducer, General Transducer, Single-phase Transducer, High Frequency Converter Transducer
Output Type: Triple
Principle of Work: Vector Control Transducer
Switch Mode: High Carrier Frequency PWM Control
Main Circuit Type: Voltage
Voltage of Power Supply: Low Voltage Variable-Frequency Drive
Samples:
US$ 78/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

How is the size of a servo motor determined based on application requirements?

The size of a servo motor is an important consideration when selecting a motor for a specific application. The size of the motor is determined based on various factors related to the application requirements. Let’s explore how the size of a servo motor is determined:

1. Torque Requirements:

One of the primary factors in determining the size of a servo motor is the torque requirements of the application. The motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. The required torque depends on factors such as the weight of the load, the distance from the motor’s axis of rotation, and any additional forces acting on the system. By analyzing the torque requirements, one can select a servo motor with an appropriate size and torque rating to meet the application’s needs.

2. Speed and Acceleration Requirements:

The desired speed and acceleration capabilities of the application also influence the size of the servo motor. Different applications have varying speed and acceleration requirements, and the motor needs to be capable of achieving the desired performance. Higher speeds and accelerations may require larger motors with more powerful components to handle the increased forces and stresses. By considering the required speed and acceleration, one can determine the size of the motor that can meet these demands.

3. Inertia and Load Inertia Ratio:

The inertia of the load and the inertia ratio between the load and the servo motor are important considerations in sizing the motor. Inertia refers to the resistance of an object to changes in its rotational motion. If the load has a high inertia, it requires a servo motor with sufficient size and torque to accelerate and decelerate the load effectively. The inertia ratio, which is the ratio of the load inertia to the motor inertia, affects the motor’s ability to control the load’s motion accurately. A proper balance between the load and motor inertia is necessary to achieve optimal performance and stability in the system.

4. Duty Cycle and Continuous Operation:

The duty cycle and continuous operation requirements of the application also impact the motor size selection. Duty cycle refers to the ratio of the motor’s operating time to the total cycle time. Applications with high-duty cycles or continuous operation may require larger motors that can handle sustained operation without overheating or performance degradation. It is important to consider the motor’s continuous torque rating and thermal characteristics to ensure it can operate reliably under the given duty cycle requirements.

5. Physical Space Constraints:

The physical space available for installing the servo motor is another factor to consider. The motor’s dimensions should fit within the available space, considering factors such as motor length, diameter, and any mounting requirements. It is essential to ensure that the chosen motor can be easily integrated into the system without interfering with other components or causing space constraints.

6. Weight Limitations:

The weight limitations of the application may influence the motor size selection. If there are weight restrictions, such as in mobile or lightweight applications, it is necessary to choose a servo motor that is compact and lightweight while still providing the required performance. Lighter servo motors can help optimize the overall weight and balance of the system.

7. Cost Considerations:

Cost is also a factor to consider when determining the size of a servo motor. Larger motors with higher torque and performance capabilities tend to be more expensive. It is important to strike a balance between the required performance and the cost constraints of the application. Analyzing the cost-effectiveness and overall value of the motor in relation to the application requirements is essential.

By considering these factors, one can determine the appropriate size of a servo motor that can meet the specific application requirements. It is advisable to consult with manufacturers or experts in the field to ensure the chosen motor size aligns with the application needs and provides optimal performance and reliability.

servo motor

What are the key advantages of using servo motors in industrial applications?

Servo motors offer several key advantages that make them highly beneficial for a wide range of industrial applications. Here are some of the main advantages of using servo motors:

1. Precise Positioning:

Servo motors excel at precise positioning control. They can accurately move to specific angles or positions with high repeatability. This level of precision is crucial in applications where accurate and consistent positioning is required, such as robotics, CNC machining, and assembly lines.

2. High Torque at Various Speeds:

Servo motors are designed to deliver high torque output across a range of speeds. They can generate significant torque even at low speeds, enabling efficient operation in applications that require both high torque and precise control, such as lifting heavy loads or performing intricate movements.

3. Fast Response Times:

Servo motors have fast response times, meaning they can quickly accelerate, decelerate, and change direction in response to control signals. This responsiveness is essential in applications where rapid and dynamic motion control is needed, such as industrial automation, robotics, and production line equipment.

4. Closed-Loop Control:

Servo motors operate in a closed-loop control system, where feedback from position sensors is continuously used to adjust the motor’s behavior. This feedback control mechanism enables accurate tracking of the desired position and compensates for any disturbances or variations that may occur during operation. It enhances the motor’s accuracy, stability, and performance.

5. Wide Range of Sizes and Power Ratings:

Servo motors are available in a wide range of sizes and power ratings, making them suitable for diverse industrial applications. Whether it’s a small motor for precision tasks or a large motor for heavy-duty operations, there are servo motor options to meet various requirements.

6. Energy Efficiency:

Servo motors are designed to be energy-efficient. They typically have high power density, which means they can deliver a significant amount of torque per unit of size and weight. This efficiency helps reduce power consumption, lowers operating costs, and contributes to a greener and more sustainable industrial environment.

7. Flexibility and Adaptability:

Due to their versatility, servo motors can be easily integrated into different systems and applications. They can be combined with various control systems, sensors, and communication protocols to provide seamless integration and compatibility with existing industrial setups. This flexibility allows for customized and scalable solutions tailored to specific industrial requirements.

8. Durability and Reliability:

Servo motors are known for their durability and reliability, even in demanding industrial environments. They are built to withstand harsh conditions such as high temperatures, vibrations, and dust. This robust construction ensures long-term operation and minimizes downtime, contributing to increased productivity and reduced maintenance costs.

In summary, the key advantages of using servo motors in industrial applications include precise positioning, high torque at various speeds, fast response times, closed-loop control for accuracy and stability, a wide range of sizes and power ratings, energy efficiency, flexibility, and durability. These advantages make servo motors highly valuable for industries that require precise motion control, such as robotics, manufacturing, automation, CNC machining, and many others.

China best Good Price 160W Drive Wheel Use Servo Motor with Hall Encoder   wholesaler China best Good Price 160W Drive Wheel Use Servo Motor with Hall Encoder   wholesaler
editor by CX 2024-02-22

China Custom AC Servo Horizontal Small Motor Permanent Magnet Concrete Cement Mixer Single Phase Motor with Encoder vacuum pump engine

Product Description

AC Servo Horizontal Small Motor Permanent Magnet Concrete Cement Mixer Single Phase Motor with Encoder

 Product Application

 Our Motor  are a fully closed, self-fan cold mouse cage three-phase asynchronous motor manufactured with new materials, new techniques, and optimized design, have high efficiency, high starting torque, low noise, more reasonable structure, and cooling conditions mature. This series of motors for general purpose three-phase asynchronous motors. It can be used to drive a variety of general mechanical equipment, such as compressors, fans, pumps, and other mechanical equipment, but also in petroleum, chemical, pharmaceutical, mining, and other fields.

Type Amps Watts(HP) rmp Eff.% Cos.fi Tsn/In Isn/In Tmax/Tn
YE3-80M1-2 1.7 1.1 2880 80.7 0.82 2.3 7 2.3
YE3-80M2-2 2.4 1.5 2880 82.7 0.83 2.2 7.3 2.3
YE3-90S-2 3.2 2 2895 84.2 0.84 2.2 7.6 2.3
YE3-90L-2 4.6 3 2895 85.9 0.85 2.2 7.6 2.3
YE3-100L-2 6 4 2995 87.1 0.87 2.2 7.8 2.3
YE3-112M-2 7.8 5.5 2905 88.1 0.88 2.2 8.3 2.3
YE3-132S1-2 10.6 7.5 2930 89.2 0.88 2 8.3 2.3
YE3-132S2-2 14.4 10 2930 90.1 0.88 2 7.9 2.3
YE3-160M1-2 20.6 15 2945 91.2 0.89 2 8.1 2.3
YE3-160M2-2 27.9 20 2945 91.9 0.89 2 8.1 2.3
YE3-160L-2 34.2 25 2945 92.4 0.89 2 8.2 2.3
YE3-180M-2 40.5 30 2960 92.7 0.89 2 8.2 2.3
YE3-200L1-2 54.9 40 2955 93.3 0.89 2 7.6 2.3
YE3-200L2-2 67.4 50 2955 93.7 0.89 2 7.6 2.3
YE3-225M-2 80.8 60 2965 94 0.9 2 7.7 2.3
YE3-250M-2 98.5 75 2970 94.3 0.9 2 7.7 2.3
YE3-280S-2 133.7 100 2975 94.7 0.8 1.8 7.1 2.3
YE3-280M-2 159.9 120 2975 95 0.9 1.8 7.1 2.3

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Open Type
Number of Poles: 6
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|

servo motor

Where can individuals find reliable resources for learning more about servo motors and their applications?

Individuals interested in learning more about servo motors and their applications can access a variety of reliable resources. These resources provide valuable information, technical knowledge, and practical insights. Here are some places where individuals can find reliable resources for expanding their understanding of servo motors:

1. Manufacturer Websites:

Leading servo motor manufacturers often provide detailed documentation, technical specifications, application notes, and white papers on their websites. These resources offer in-depth information about their products, technologies, and best practices for servo motor applications. Users can visit the websites of prominent manufacturers to access reliable and up-to-date information.

2. Industry Associations and Organizations:

Industry associations and organizations related to automation, robotics, or specific industries often offer educational materials and resources on servo motors. They may provide technical publications, webinars, seminars, and training programs focused on servo motor technology and applications. Examples of such organizations include the International Society of Automation (ISA), the Robotics Industries Association (RIA), and the Society of Automotive Engineers (SAE).

3. Books and Technical Publications:

Books dedicated to servo motor technology, control systems, and industrial automation can provide comprehensive knowledge on the subject. Some recommended titles include “Servo Motors and Industrial Control Theory” by Riazollah Firoozian, “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and Bill Drury, and “Servo Motors and Motion Control: An Introduction” by Albert F. Seabury. Technical publications and journals such as IEEE Transactions on Industrial Electronics and Control Engineering Practice also offer valuable insights and research findings.

4. Online Courses and Training Platforms:

Various online learning platforms offer courses and training programs focused on servo motors and their applications. Websites like Udemy, Coursera, and LinkedIn Learning provide access to video-based courses taught by industry experts. These courses cover topics such as servo motor fundamentals, motion control, programming, and troubleshooting. By enrolling in these courses, individuals can acquire structured knowledge and practical skills related to servo motors.

5. Technical Forums and Discussion Groups:

Participating in technical forums and discussion groups can be an effective way to learn from industry professionals and enthusiasts. Websites like Stack Exchange, Reddit, and engineering-focused forums host discussions on servo motors, where individuals can ask questions, share experiences, and gain insights from the community. It’s important to verify the credibility of the information shared in such forums and rely on responses from trusted contributors.

6. Trade Shows and Conferences:

Attending trade shows, exhibitions, and conferences related to automation, robotics, or specific industries can provide opportunities to learn about servo motors. These events often feature presentations, workshops, and demonstrations by industry experts and manufacturers. Participants can gain hands-on experience, interact with professionals, and stay updated with the latest advancements in servo motor technology.

By leveraging these reliable resources, individuals can deepen their knowledge and understanding of servo motors and their applications. It is advisable to consult multiple sources and cross-reference information to ensure a comprehensive understanding of the subject.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

In which industries are servo motors commonly used, and what applications do they serve?

Servo motors are widely used across various industries due to their precise control capabilities and ability to deliver high torque at different speeds. Here are some industries where servo motors are commonly employed, along with their applications:

1. Robotics:

Servo motors are extensively used in robotics to control the movement of robotic limbs and joints. They enable precise positioning and accurate control, allowing robots to perform tasks with high accuracy and repeatability. Servo motors are also employed in humanoid robots, industrial manipulators, and collaborative robots (cobots).

2. Manufacturing and Automation:

In manufacturing and automation industries, servo motors are used in various applications such as conveyor systems, pick-and-place machines, packaging equipment, and assembly lines. Servo motors provide precise control over the movement of components, ensuring accurate positioning, fast response times, and high throughput.

3. CNC Machining:

Servo motors play a vital role in computer numerical control (CNC) machines, where they control the movement of axes (e.g., X, Y, and Z). These motors enable precise and smooth motion, allowing CNC machines to accurately shape and cut materials such as metal, wood, and plastics. Servo motors are also used in CNC routers, milling machines, lathes, and laser cutting equipment.

4. Aerospace and Aviation:

Servo motors find applications in the aerospace and aviation industries, particularly in flight control systems. They are used to control the movement of aircraft surfaces, such as ailerons, elevators, rudders, and flaps. Servo motors ensure precise and responsive control, contributing to the stability and maneuverability of aircraft.

5. Medical Devices:

In the medical field, servo motors are used in various devices and equipment. They are employed in robotic surgery systems, prosthetics, exoskeletons, infusion pumps, diagnostic equipment, and laboratory automation. Servo motors enable precise and controlled movements required for surgical procedures, rehabilitation, and diagnostic tests.

6. Automotive:

Servo motors have several applications in the automotive industry. They are used in electric power steering systems, throttle control, braking systems, and active suspension systems. Servo motors provide accurate control over steering, acceleration, and braking, enhancing vehicle safety and performance.

7. Entertainment and Motion Control:

Servo motors are widely used in the entertainment industry for animatronics, special effects, and motion control systems. They enable realistic movements of animatronic characters, robotic props, and camera rigs in film, television, and theme park attractions. Servo motors also find applications in motion simulators, gaming peripherals, and virtual reality systems.

In addition to these industries, servo motors are utilized in various other fields, including industrial automation, renewable energy systems, textile machinery, printing and packaging, and scientific research.

Overall, servo motors are versatile components that find widespread use in industries requiring precise motion control, accurate positioning, and high torque output. Their applications span across robotics, manufacturing, CNC machining, aerospace, medical devices, automotive, entertainment, and numerous other sectors.

China Custom AC Servo Horizontal Small Motor Permanent Magnet Concrete Cement Mixer Single Phase Motor with Encoder   vacuum pump engine	China Custom AC Servo Horizontal Small Motor Permanent Magnet Concrete Cement Mixer Single Phase Motor with Encoder   vacuum pump engine
editor by CX 2024-02-20

China manufacturer 48V 400W Servo Motor AC Servo Motor That Integrates Driver, Encoder and Permanent Magnet Synchronous Motor vacuum pump engine

Product Description

Product Description

 

GCAN-ISM series bus-type low-voltage AC servo all-in-1 machine (hereinafter referred to as CHINAMFG servo motor), the motor adopts permanent magnet synchronous motor, the driver adopts low-voltage DC power supply, small size, regular shape, easy installation, convenient networking, support CANopen bus control mode .

Product Model

 

Model Rated voltage motor base rated power Rated speed Encoder Braking resistor Brake temperature
ISM-262CANN-N 24V 60 200W 3000rpm 23-bit multi-turn absolute value not accessible none Normal temperature motor
ISM-262CABL-N 24V 60 200W 3000rpm 23-bit multi-turn absolute value Can be accessed yes Normal temperature motor
ISM-464CANN-N 48V 60 400W 3000rpm 23-bit multi-turn absolute value not accessible none Normal temperature motor
ISM-464CABL-N 48V 60 400W 3000rpm 23-bit multi-turn absolute value Can be accessed yes Normal temperature motor
ISM-488CANN-N 48V 80 750W 3000rpm 23-bit multi-turn absolute value not accessible none Normal temperature motor
ISM-488CABL-N 48V 80 750W 3000rpm 23-bit multi-turn absolute value Can be accessed yes Normal temperature motor

Product Parameters

Hardware version number
temperature C:cryogenic electrode N:Normal temperature motor
Brake L:with brake N:No holding brake
Braking resistor B:Braking resistor can be connected N:Braking resistor cannot be connected
Encoder A:23-bit multi-turn absolute value B:17-bit multi-turn absolute value
Rated speed C:3000rpm
rated power 2:200W 4:400W 8:750W  
motor base 6:60 8:80    
Rated voltage 2:24V 4:48V    
department code ISM:Low voltage integrated servo motor

 

power 200W/400W/750W
Input voltage 24-48VDC
control mode Position mode, speed mode, torque mode
drive and feedback Using FOC field oriented control technology, current control frequency 10kHz position accuracy 65536pulse/r
LED indicator Green running indicator, red fault indicator
Insulation class F(155ºC)
Protection class Totally enclosed self-cooling (IP 65 except output shaft extension and connector)
Insulation withstand voltage AC 1500V 60S
Insulation resistance DC 500V >20MΩ
Number of pole pairs 5
turn around CCW (Forward rotation command rotates counterclockwise when viewed from the load side)
Installation method flange mount
way to control CAN bus mode, support CANopen protocol
Minimum speed 0.1rpm
Speed control accuracy ±0.1rpm
Position control accuracy ±1 Pulse
Torque control accuracy ±3% Rated torque
overload capacity 200%
Fault detection and protection Overvoltage protection, overcurrent protection, undervoltage protection, overtemperature protection, stall protection, parameter read/write error, CAN offline error, built-in fuse and temperature detection
special function Support control parameter self-tuning, support vibration suppression

Application

Factory & Certifications

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Function: Driving, Control
Brand: Gcan
Power Supply Range and Mode: DC9~30V, Typical Value 48V
Working Humidity Range: 5%~95%Rh Without Condensation
Samples:
US$ 285/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

What factors should be considered when selecting a servo motor for a specific application?

When selecting a servo motor for a specific application, several factors need to be considered. These factors help ensure that the chosen servo motor meets the requirements and performs optimally in the intended application. Here are some key factors to consider:

1. Torque and Power Requirements:

One of the primary considerations is the torque and power requirements of the application. The servo motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. Additionally, the power rating of the motor should match the power supply available in the application. It is essential to evaluate the torque-speed characteristics of the servo motor to ensure it can deliver the required performance.

2. Speed and Acceleration:

The required speed and acceleration capabilities of the servo motor should align with the application’s needs. Different applications have varying speed and acceleration requirements, and the servo motor should be able to meet these demands. It is crucial to consider both the maximum speed that the motor can achieve and the time it takes to accelerate or decelerate to specific speeds. Evaluating the servo motor’s speed-torque characteristics and acceleration capabilities is necessary for selecting the right motor.

3. Positioning Accuracy and Repeatability:

The desired positioning accuracy and repeatability of the application play a significant role in servo motor selection. If precise positioning is crucial, a servo motor with high accuracy and low positioning errors should be chosen. The feedback mechanism, such as encoders or resolvers, should provide the required resolution to achieve the desired accuracy. Repeatability, the ability to consistently reach the same position, should also be considered, especially in applications where repetitive movements are necessary.

4. Environmental Conditions:

The environmental conditions in which the servo motor will operate should be taken into account. Factors such as temperature extremes, humidity, dust, and vibration can affect the motor’s performance and lifespan. In harsh environments, it may be necessary to choose a servo motor with appropriate protection ratings, such as IP (Ingress Protection) ratings, to ensure reliable operation and longevity.

5. Control System Compatibility:

The compatibility of the servo motor with the control system used in the application is crucial. The motor should be compatible with the control signals and communication protocols employed in the system. This includes considerations such as voltage compatibility, control signal types (analog, digital, pulse), and communication interfaces (such as Ethernet, CAN, or Modbus). Ensuring compatibility will facilitate seamless integration and efficient control of the servo motor within the application.

6. Size and Weight Constraints:

The physical size and weight limitations of the application should be considered when selecting a servo motor. The motor’s dimensions should fit within the available space, and its weight should not exceed the application’s weight capacity. Compact and lightweight servo motors may be preferred in applications where space is limited or weight is a critical factor.

7. Cost Considerations:

The cost of the servo motor and its overall value for the application should be evaluated. It is essential to consider the initial purchase cost as well as the long-term maintenance and operational costs. While cost is a factor, it should not be the sole determining factor, as compromising on quality or performance may lead to suboptimal results.

By considering these factors, one can make an informed decision when selecting a servo motor for a specific application. It is recommended to consult with manufacturers or experts in the field to ensure the chosen servo motor meets the application’s requirements and provides reliable and efficient performance.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China manufacturer 48V 400W Servo Motor AC Servo Motor That Integrates Driver, Encoder and Permanent Magnet Synchronous Motor   vacuum pump engine	China manufacturer 48V 400W Servo Motor AC Servo Motor That Integrates Driver, Encoder and Permanent Magnet Synchronous Motor   vacuum pump engine
editor by CX 2024-02-19

China best GSK ZJY182A-1.5KW High Efficiency Spindle Servo Motor high precision encoder motor with high quality

Product Description

Models Numbers

Product Description

GSK ZJY series spindle servo motor

Adopt the totally enclosed air cooling structure without the shell, good shape and compact structure.
Employ the optimized electromagnetic design with the characters of the low noise, smooth running and high efficiency. 
Introduce the imported bearing in high precision, and the rotor reaches the high precision with the dynamic balance process, which can ensure the motor running stable and reliable with small vibration and low noise in the maximum rotational speed range. 
Adopt the enameled wire of corona resistance, the motor can be driven reliably at the ambient temperature of -15″C~40″C and in the environment with the dust and oil mist.
Employ the encoder at high speed and in high precision, and it can be incorporated into the drive with high performance for controlling the speed and the position in high precision.
The overload capacity is strong and the motor is reliably running at Reliable operation at 150% of rated power for 30 minutes.
The speed regulation range is wide and the maximum speed can reach 12000r/min.
Impact resistance, long lifetime and high cost performance.
Protection level: IP54 (GB/T 4942.1-2006)
Insulation grade: Grade F (GB 755-2008)
Vibration grade: Grade B (GB 10068-2008)

Models Numbers

SR.NO Meaning 
(1) The spindle servo motor 
(2) Flange size ( 182, 208, 265, 320 ) 
(3) Design sequence number (None: Original A, B,C… : design sequence number) 
(4) Rated power (Unit:KW)
(5) Rated speed (V: 600 r/min, W: 750 r/min, A: 1000 r/min, B:1500 r/min, C: 2000 r/min, E: 3000 r/min )
(6) Max. speed (G: 15000 r/min,F: 12000 r/min, H:10000 r/min, M:7000 r/min, L:4500 r/min ) 
(7) D:Dual-Speed type 
(8) Structure installation type: (B5 flange installation, B3 footing installation, B35 flange & footing installation )
(9) Encoder type (None: Incremental 1571 p/r, A2: Incremental 5000 p/r, A5: Absolute 21 bit ) 
(10) Look the terminal box position in view from the shaft end (None: on the top, R: on the right, L: on the left).
(11) Shaft end (None: strainht shaft , Y1: with the standard key slot) 
(12) Customer special order numbers are bracketed in two capitals.
(13) Power supply voltage (none: three-phase 380~440V, L: three-phase 220V)

 

Product Parameters

 

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-1)

              Model ZJY182A-3.7BL ZJY182A-5.5BL ZJY182A-1.5BH ZJY182A-2.2BH ZJY182A-3.7BH ZJY182A-5.5BH ZJY182A-3.7EG ZJY182A-5.5EG ZJY182A-7.5EG
Item
Rated power(kW) 3.7 5.5 1.5 2.2 3.7 5.5 3.7 5.5 7.5
Adaptive driver  GS/GR3050 GS/GR3050 GS/GR3048 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3050 GS/GR3075 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 10.4 13.8 7.3 7.5 15.5 17.3 11.6 16.6 20.2
Rated 53.7 53.5 53.9 53.6 53.1 53.5 103.2 103.3 103.2
frequency(Hz)
Rated torque(N·m) 24 35 9.5 14 24 35 11.8 17.5 24
30min power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 5.5 7.5 11
30min current(A) 14.8 18 9.3 11 19.6 21.8 15.4 20.7 26.6
30min torque(N·m) 35 48 14 24 35 48 17.5 24 35
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 3000 3000 3000
Constant power range(r/min) 1500~4500 1500~4500 1500~8000 1500~8000 1500~8000 1500~8000 3000~12000 3000~12000 3000-12000
Max. speed(r/min) 4500 4500 10000 10000 10000 10000 15000 15000 15000
Moment of inertia(kg·m2) 0.0068 0.5712 0.004 0.0054 0.0083 0.5712 0.0054 0.0068 0.0083
Weight(kg) 37 52 27 32 43 52 32 37 43
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 37W 0.1A
 Overall dimension
 (refer to figures)
A 182 182 182 182 182 182 182 182 182
B 91 91 91 91 91 91 91 91 91
C 123 123 123 123 123 123 123 123 123
D 185 185 185 185 185 185 185 185 185
E 60 60 60 60 60 60 60 60 60
F 371 436 319 346 401 436 346 371 401
G 249 314 197 224 279 314 224 249 279
H 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7
I 12 12 12 12 12 12 12 12 12
J 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6
K 158 158 158 158 158 158 158 158 158
L 93 93 93 93 93 93 93 93 93
N 156 156 156 156 156 156 156 156 156
P 32 32 32 32 32 32 32 32 32
Q 184 249 132 159 214 249 159 184 214
S 60 60 60 60 60 60 60 60 60
T 4 4 4 4 4 4 4 4 4
Z 12 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-2)

     Model ZJY208A-3.7WL ZJY208A-2.2AM ZJY208A-3.7AM ZJY208A-5.5AM ZJY208A-5.5BL ZJY208A-7.5BL ZJY208A-9BL ZJY208A-3.7BM
Item
Rated power(kW) 3.7 2.2 3.7 5.5 5.5 7.5 9 3.7
Adaptive driver  GS/GR3050 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3075 GS/GR3075 GS/GR3100 GS/GR3050
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 11.3 6.7 10.2 16.3 12.9 17.9 21.6 8.6
Rated 27.3 35.7 35.7 35.7 53.3 52.9 52.6 52.9
frequency(Hz)
Rated torque(N·m) 47 21 35 53 35 48 57.3 24
30min power(kW) 5.5 3.7 5.5 7.5 7.5 11 12 5.5
30min current(A) 16 10.6 14.2 20.5 16.8 24 27.2 12.7
30min torque(N·m) 70 35 53 72 48 70 76.4 35
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500
Constant power range(r/min) 750~3500 1000~4000 1000~4000 1000~4000 1500~4500 1500~4500 1500~4500 1500-5000
Max. speed(r/min) 4500 7000 7000 7000 4500 4500 4500 7000
Moment of inertia(kg·m2) 0.571 0.0142 0.0196 0.571 0.0143 0.0196 0.5716 0.0142
Weight(kg) 77 51 66 77 51.5 66 77.5 51
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A
 Overall dimension 
(refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 80 80 80 80 80 80 80
F 524 414 469 524 414 469 524 414
G 395 285 340 395 285 340 395 285
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 28h6 38h6 38h6 38h6 38h6 48h6 28h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 320 210 265 320 210 265 320 210
S 80 60 80 80 80 80 110 60
T 5 5 5 5 5 5 5 5
  Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-3)

     Model ZJY208A-5.5BM ZJY208A-7.5BM ZJY208A-2.2BH ZJY208A-3.7BH ZJY208A-5.5BH ZJY208A-7.5BH ZJY208A-11CM ZJY208A-11CH
Item
Rated power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 11 11
Adaptive driver  GS/GR3050 GS/GR3075 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3100 GS/GR3100 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 13 17 8.9 12.6 18.4 22.4 28.3 28.3
Rated 52.4 52.7 52.6 52.5 52.4 52.6 69.1 69
frequency(Hz)
Rated torque(N·m) 35 48 14 24 35 48 52.6 52.5
30min power(kW) 7.5 11 3.7 5.5 7.5 11 15 15
30min current(A) 16.9 24.6 13.8 18 24 32.2 37 37
30min torque(N·m) 48 70 24 35 48 70 71.6 71.6
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 2000 2000
Constant power range(r/min) 1500~5000 1500~5000 1500~5000 1500~5000 1500~8000 1500~8000 2000~7000 2000-8000
Max. speed(r/min) 7000 7000 10000 10000 10000 10000 7000 10000
Moment of inertia(kg·m2) 0.0196 0.571 0.0093 0.0142 0.0196 0.571 0.5716 0.571
Weight(kg) 66 77 49 51 66 77 77.5 77
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 80 60 60 80 80 110 80
F 469 524 364 414 469 524 524 524
G 340 395 235 285 340 395 395 395
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 38h6 28h6 28h6 38h6 38h6 48h6 38h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 265 320 160 210 265 320 320 320
S 80 80 53 60 80 80 110 80
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-4)

     Model ZJY208A-5.5CF ZJY208A-7.5CF ZJY208A-11EH ZJY208A-5.5EF ZJY208A-7.5EF ZJY208A-11EF ZJY265A-5.5WL ZJY265A-7.5WL
Item
Rated power(kW) 5.5 7.5 11 5.5 7.5 11 5.5 7.5
Adaptive driver  GS/GR3075 GS/GR3100 GS/GR3100 GS/GR3050 GS/GR3075 GS/GR3100 GS/GR3075 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 19 25.8 25.2 12.8 17.7 25.2 16.3 21.4
Rated 69 69 102.2 102.9 102.2 102.2 26.6 26.7
frequency(Hz)
Rated torque(N·m) 26.3 35.8 35 17.5 24 35 70 95.5
30min power(kW) 7.5 11 15 7.5 11 15 7.5 11
30min current(A) 24 34.9 31.6 16 23.3 31.7 20.8 30.1
30min torque(N·m) 35.8 52.5 48 24 35 48 95.5 140
Rated speed(r/min) 2000 2000 3000 3000 3000 3000 750 750
Constant power range(r/min) 2000~10000 2000~10000 3000~9000 3000~10000 3000~10000 3000~10000 750~3500 750-3500
Max. speed(r/min) 12000 12000 10000 12000 12000 12000 4500 4500
Moment of inertia(kg·m2) 0.0142 0.0196 0.0196 0.0093 0.0142 0.0196 0.0606 0. 0571
Weight(kg) 51 66 66 49 51 66 107 125
Installation type IM B5 or B35  IM B5 or B3
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A Three-phase AC 380~440V 50/60Hz 70W 0.21A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 265 265
B 104 104 104 104 104 104 132 132
C 160 160 160 160 160 160 185 185
D 215 215 215 215 215 215 265 265
E 60 80 80 60 60 80 110 110
F 414 469 469 364 414 469 487 533
G 285 340 340 235 285 340 347 392
H 180h7 180h7 180h7 180h7 180h7 180h7 230h7 230h7
I 14 14 14 14 14 14 14 14
J 28h6 38h6 38h6 28h6 28h6 38h6 48h6 48h6
K 212 212 212 212 212 212 256 256
L 106 106 106 106 106 106 135 135
N 180 180 180 180 180 180 230 230
P 40 40 40 40 40 40 40 40
Q 210 265 265 160 210 265 270 315
S 60 80 80 60 60 80 110 110
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 15 15

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-5)

     Model ZJY265A-11WL ZJY265A-7.5AM ZJY265A-11AM ZJY265A-15AM ZJY265A-7.5BM ZJY265A-11BM ZJY265A-15BM ZJY265A-18.5BM ZJY265A-22BM
Item
Rated power(kW) 11 7.5 11 15 7.5 11 15 18.5 22
Adaptive driver  GS/GR3148 GS/GR3100 GS/GR3148 GS/GR3150 GS/GR3075 GS/GR3100 GS/GR3150 GS/GR3150 GS/GR3198
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 30 21.5 30.9 48.3 18 26 35 48.7 58
Rated 27.2 35.2 35.2 35.1 52.3 52.2 51.9 51.8 51.7
frequency(Hz)
Rated torque(N·m) 140 72 105 143 48 70 95 118 140
30min power(kW) 15 11 15 18.5 11 15 18.5 22 30
30min current(A) 41 29 40.2 56 26 34 42 54.7 73
30min torque(N·m) 191 105 143 177 70 95 118 140 191
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500 1500
Constant power range(r/min) 750~3500 1000~4000 1000~4000 1000~4000 1500~5000 1500~5000 1500~5000 1500~5000 1500-5000
Max. speed(r/min) 4500 7000 7000 7000 7000 7000 7000 7000 7000
Moment of inertia(kg·m2) 0. 0571 0. 0571 0.571 0.0869 0. 0571 0.571 0.571 0.571 0.1043
Weight(kg) 143 89 125 143 89 107 125 143 162
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 70W 0.21A
 Overall dimension
 (refer to figures)
A 265 265 265 265 265 265 265 265 265
B 132 132 132 132 132 132 132 132 132
C 185 185 185 185 185 185 185 185 185
D 265 265 265 265 265 265 265 265 265
E 110 110 110 110 110 110 110 110 110
F 577 442 532 577 442 487 532 577 632
G 437 302 392 437 302 347 392 437 492
H 230h7 230h7 230h7 230h7 230h7 230h7 230h7 230h7 230h7
I 14 14 14 14 14 14 14 14 14
J 55h6 48h6 48h6 48h6 48h6 48h6 48h6 55h6 55h6
K 256 256 256 256 256 256 256 256 256
L 135 135 135 135 135 135 135 135 135
N 230 230 230 230 230 230 230 230 230
P 40 40 40 40 40 40 40 40 40
Q 360 225 315 360 225 270 315 360 415
S 110 110 110 110 110 110 110 110 110
T 5 5 5 5 5 5 5 5 5
Z 15 15 15 15 15 15 15 15 15

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-6)

     Model ZJY265A-7.5BH ZJY265A-11BH ZJY265A-15BH ZJY320A-18.5WL ZJY320A-22WL ZJY320A-30BL ZJY320A-37BL ZJY320A-45BL
Item
Rated power(kW) 7.5 11 15 18.5 22 30 37 45
Adaptive driver  GS/GR3100 GS/GR3148 GS/GR3150 GS/GR3198 GS/GR3198 GS/GR3300 GS/GR3300 GS/GR3300
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 21 30 40.7 51 58 69 87 100
Rated 51.7 51.7 51.7 26.1 26 51.2 51.1 51.1
frequency(Hz)
Rated torque(N·m) 48 70 95 235 280 191 235 286
30min power(kW) 11 15 18.5 22 30 37 45 55
30min current(A) 28.5 38.3 42.7 59 73 83 102 115
30min torque(N·m) 70 95 118 280 381 235 286 352
Rated speed(r/min) 1500 1500 1500 750 750 1500 1500 1500
Constant power range(r/min) 1500~8000 1500~8000 1500~8000 750~3500 750~3500 1500~4500 1500~4500 1500~4500
Max. speed(r/min) 10000 10000 10000 4500 4500 4500 4500 4500
Moment of inertia(kg·m2) 0. 0571 0.571 0.571 0.2997 0.345 0.24 0.2997 0.348
Weight(kg) 89 107 125 249 285 208 249 293
Installation type IM B5 or B3  IM B35
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 70W 0.21A Three-phase AC 380~440V 50/60Hz 60W 0.22A
 Overall dimension
 (refer to figures)
A 265 265 265 320 320 320 320 320
B 132 132 132 \ \ \ \ \
C 185 185 185 193 193 193 193 193
D 265 265 265 350 350 350 350 350
E 110 110 110 140 140 140 140 140
F 442 487 532 715 765 645 715 785
G 302 347 392 450 500 380 450 520
H 230h7 230h7 230h7 300h7 300h7 300h7 300h7 300h7
I 14 14 14 19 19 19 19 19
J 48h6 48h6 48h6 60h6 60h6 60h6 60h6 60h6
K 256 256 256 \ \ \ \ \
L 135 135 135 165 165 165 165 165
N 230 230 230 279 279 279 279 279
P 40 40 40 50 50 50 50 50
Q 225 270 315 529 579 459 529 599
S 110 110 110 \ \ \ \ \
T 5 5 5 5 5 5 5 5
Z 15 15 15 19 19 19 19 19

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-1)

     Model ZJY182A-3.7BL ZJY182A-5.5BL ZJY182A-1.5BH ZJY182A-2.2BH ZJY182A-3.7BH ZJY182A-5.5BH ZJY182A-3.7EG ZJY182A-5.5EG ZJY182A-7.5EG
Item
Rated power(kW) 3.7 5.5 1.5 2.2 3.7 5.5 3.7 5.5 7.5
Adaptive driver  GS/GR2075 GS/GR2100 GS/GR2050 GS/GR2050 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2148
Drive power supply(V) Three-phase AC 220V  50/60Hz
Rated current(A) 17.9 23.9 10.7 12.9 23.5 30 20 28.8 35
Rated 53.7 53.5 53.9 53.6 53.1 53.5 103.2 103.3 103.2
frequency(Hz)
Rated torque(N·m) 24 35 9.5 14 24 35 11.8 17.5 24
30min power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 5.5 7.5 11
30min current(A) 25.2 31.1 17.6 20 36.4 40.7 26.7 35.8 47.3
30min torque(N·m) 35 48 14 24 35 48 17.5 24 35
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 3000 3000 3000
Constant power range(r/min) 1500-4500 1500-4500 1500~8000 1500~8000 1500~8000 1500~8000 3000~12000 3000~12000 3000~12000
Max. speed(r/min) 4500 4500 10000 10000 10000 10000 15000 15000 15000
Moment of inertia(kg·m2) 0.0068 0.5712 0.004 0.0054 0.0083 0.5712 0.0054 0.0068 0.0083
Weight(kg) 37 52 27 32 43 52 32 37 43
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 220V 50/60Hz 37W 0.1A
 Overall dimension
 (refer to figures)
A 182 182 182 182 182 182 182 182 182
B 91 91 91 91 91 91 91 91 91
C 123 123 123 123 123 123 123 123 123
D 185 185 185 185 185 185 185 185 185
E 60 60 60 60 60 60 60 60 60
F 371 436 319 346 401 436 346 371 401
G 249 314 197 224 279 314 224 249 279
H 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7
I 12 12 12 12 12 12 12 12 12
J 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6
K 184 184 158 158 158 158 158 158 158
L 93 93 93 93 93 93 93 93 93
N 156 156 156 156 156 156 156 156 156
P 32 32 32 32 32 32 32 32 32
Q 184 249 132 159 214 249 159 184 214
S 60 60 60 60 60 60 60 60 60
T 4 4 4 4 4 4 4 4 4
Z 12 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-2)

     Model ZJY208A-3.7WL ZJY208A-2.2AM ZJY208A-3.7AM ZJY208A-5.5AM ZJY208A-5.5BL ZJY208A-7.5BL ZJY208A-9BL ZJY208A-3.7BM
Item
Rated power(kW) 3.7 2.2 3.7 5.5 5.5 7.5 9 3.7
Adaptive driver  GS/GR2075 GS/GR2050 GS/GR2075 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2148 GS/GR2075
Drive power supply(V) Three-phase AC 220V  50/60Hz
Rated current(A) 19.6 11.6 17.7 28.2 22.4 31 37.5 14.9
Rated 27.3 35.7 35.7 35.7 53.3 52.9 52.6 52.9
frequency(Hz)
Rated torque(N·m) 47 21 35 53 35 48 57.3 24
30min power(kW) 5.5 3.7 5.5 7.5 7.5 11 12 5.5
30min current(A) 27.3 18.4 24.6 35.5 28 41.3 46.2 22
30min torque(N·m) 70 35 53 72 48 70 76.4 35
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500
Constant power range(r/min) 750-3500 1000-4000 1000~4000 1000~4000 1500~4500 1500~4500 1500~4500 1500~5000
Max. speed(r/min) 4500 7000 7000 7000 4500 4500 4500 7000
Moment of inertia(kg·m2) 0.571 0.0142 0.0196 0.571 0.0143 0.0196 0.571 0.0142
Weight(kg) 77 51 66 77 51.5 66 77.5 51
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 220V 50/60Hz 40W 0.14A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 60 80 80 80 80 110 60
F 524 414 469 524 414 469 524 414
G 395 285 340 395 285 340 395 285
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 28h6 38h6 38h6 38h6 38h6 48h6 28h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 320 210 265 320 210 265 320 210
S 80 80 80 80 80 80 110 60
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-3)
The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-4)
The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-5)
The main technical parameters of dual speed  motor and its overall dimension(List 3)

 

Company Profile

 

GSK CNC Equipment Co., Ltd.

GSK CNC Equipment Co., Ltd. (hereinafter referred as GSK) is specially devoted to conducting research and practice of basic equipment industrial development, providing “trinity” packaged solutions of machine tool CNC system, servo drive and servo motor, taking initiative in the expansion of industrial robot and all-electric injection molding machine field, developing the new marketing mode of machine tool exhibition hall, providing the customers with all-round professional machine tool remanufacturing solutions and services, promoting the integration of production and education, setting up the vocational education and training institute, as well as conducting highly skilled CNC personnel training. It has developed into a high-tech enterprise integrating science, education, industry and trade, thus being known as “China Southern CNC Industrial Base”. 
Adhering to the corporate philosophy of “making itself a century-old enterprise and building gold quality” and the service spirit of “keeping improvement and making users satisfied”, GSK enhances the user product value & benefits through continuous technological progress and innovation, and makes unremitting efforts to promote the localization process of basic equipment industry, improve the technological level of the industry, and promote the development of China’s national equipment manufacturing industry. 

Main products:

                            GSK CNC System                                                                          Idustrial robot  

Full electric injection molding machine                                              CNC machine

       

     I nternational exhibition

 Exhibition hall
218MC USB Reading Problem Solution
2 18MC USB Reading Problem Solution

FAQ

Payments

1) We can accept EXW, FOB
2) Payment must be made before shipment.
3) Import duties, taxes and charges are not included in the item price or shipping charges. These charges are the buyer’s responsibility.

Shipping
1) We only ship to your confirmed address. Please make sure your shipping address is correct before purchase.
2) Most orders will be shipped out within 3-7 working days CHINAMFG payment confirmation.
3) Shipping normally takes 7-25 working days. Most of the items will delivery in 2 weeks, while there will be a delay for something we cannot control (such as the bad weather). If it happens, just contact us, we will help you check and resolve any problem.
3) Please check the package CHINAMFG receipt, if there are some damages, please contact us immediately.
Feedback & Refund
1) Feedback is important to us, if you have any problem with our products, please contact us, our technician will give you useful advises.
2) When you have the parcel and not satisfied with the goods or it is other problem, please tell us immediately, and provide us a photo showing the detail.
3) Any reason requiring for all refund. Items must be in original condition and no physical damage. Buyer responsible for all shipping cost.

If you need more information, please contact with us. We will attach great importance to your any problems.
Hope we could establish a long-term effective cooperation.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Starting Mode: Auto-induction Voltage-reduced Starting
Customization:
Available

|

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

What is the significance of closed-loop control in servo motor operation?

Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:

1. Accuracy and Precision:

Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.

2. Stability and Repeatability:

Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.

3. Compensation for Disturbances:

One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.

4. Improved Response Time:

Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.

5. Adaptability to Changing Conditions:

Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.

In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.

servo motor

What are the key advantages of using servo motors in industrial applications?

Servo motors offer several key advantages that make them highly beneficial for a wide range of industrial applications. Here are some of the main advantages of using servo motors:

1. Precise Positioning:

Servo motors excel at precise positioning control. They can accurately move to specific angles or positions with high repeatability. This level of precision is crucial in applications where accurate and consistent positioning is required, such as robotics, CNC machining, and assembly lines.

2. High Torque at Various Speeds:

Servo motors are designed to deliver high torque output across a range of speeds. They can generate significant torque even at low speeds, enabling efficient operation in applications that require both high torque and precise control, such as lifting heavy loads or performing intricate movements.

3. Fast Response Times:

Servo motors have fast response times, meaning they can quickly accelerate, decelerate, and change direction in response to control signals. This responsiveness is essential in applications where rapid and dynamic motion control is needed, such as industrial automation, robotics, and production line equipment.

4. Closed-Loop Control:

Servo motors operate in a closed-loop control system, where feedback from position sensors is continuously used to adjust the motor’s behavior. This feedback control mechanism enables accurate tracking of the desired position and compensates for any disturbances or variations that may occur during operation. It enhances the motor’s accuracy, stability, and performance.

5. Wide Range of Sizes and Power Ratings:

Servo motors are available in a wide range of sizes and power ratings, making them suitable for diverse industrial applications. Whether it’s a small motor for precision tasks or a large motor for heavy-duty operations, there are servo motor options to meet various requirements.

6. Energy Efficiency:

Servo motors are designed to be energy-efficient. They typically have high power density, which means they can deliver a significant amount of torque per unit of size and weight. This efficiency helps reduce power consumption, lowers operating costs, and contributes to a greener and more sustainable industrial environment.

7. Flexibility and Adaptability:

Due to their versatility, servo motors can be easily integrated into different systems and applications. They can be combined with various control systems, sensors, and communication protocols to provide seamless integration and compatibility with existing industrial setups. This flexibility allows for customized and scalable solutions tailored to specific industrial requirements.

8. Durability and Reliability:

Servo motors are known for their durability and reliability, even in demanding industrial environments. They are built to withstand harsh conditions such as high temperatures, vibrations, and dust. This robust construction ensures long-term operation and minimizes downtime, contributing to increased productivity and reduced maintenance costs.

In summary, the key advantages of using servo motors in industrial applications include precise positioning, high torque at various speeds, fast response times, closed-loop control for accuracy and stability, a wide range of sizes and power ratings, energy efficiency, flexibility, and durability. These advantages make servo motors highly valuable for industries that require precise motion control, such as robotics, manufacturing, automation, CNC machining, and many others.

China best GSK ZJY182A-1.5KW High Efficiency Spindle Servo Motor high precision encoder motor   with high quality China best GSK ZJY182A-1.5KW High Efficiency Spindle Servo Motor high precision encoder motor   with high quality
editor by CX 2024-02-10

China Hot selling Hall Sensor Incremental Encoder Feedback Electric BLDC Motor Servo High Torque 48V 2000W Brushless DC Motor vacuum pump ac

Product Description

48V 1KW 2KW 3KW Robot Motor Brushless DC Servo Motor 

Product Features
Protection grade:IP65, insulation grade:F
Winding overhang structure optimization, to minimize the copper loss and iron loss minimization, small volume, light weight, low temperature rise, high efficiency
Super high coercivity, the maximum magnetic energy product NdFe35 permanent magnetic materials, strong resistance to demagnetization, motor performance is stable.
Low noise, low vibration, low moment of inertia.
High torque, fast dynamic response, wide speed range, strong overload capacity (four times)

*High Torque to inertia ratio&up to 25000Nm/kgm²
*Fast dynamic response *time constant <20ms
*Wide speed adjusting&feedback up to 1000:1
*Steady speed precision up to 0.5%
*High overload,2Mn/30s,3.5N.m/10s
*Small volume and light
*Silent,the lowest noise is only 45dB(A)
*Protected with IP65,Class F insulation
Industry class
1.The altitude should be over 1000 CHINAMFG above sea level
2.Environment temperature:+5ºC~+40ºC
3.The month average tallest relative humidity is 90%,at the same the month average lowest temperature is less than 25

Model KY110AS0420-25
VOLT 48VDC
POWER 2000W
SPEED 1500RPM
TORQUE 9.5N.M
ENCODER 2500PPR
APPLICATION AGV ROBOT,FIRE ROBOT,ELECTRIC VEHICLE

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Car, Electric Vehicle
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 10
Samples:
US$ 342/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

What role does the controller play in the overall performance of a servo motor?

The controller plays a crucial role in the overall performance of a servo motor system. It is responsible for monitoring and regulating the motor’s operation to achieve the desired motion and maintain system stability. Let’s explore in detail the role of the controller in the performance of a servo motor:

1. Motion Control:

The controller is responsible for generating precise control signals that dictate the motor’s speed, torque, and position. It receives input commands from the user or higher-level control system and translates them into appropriate control signals for the servo motor. By accurately controlling the motor’s motion, the controller enables precise positioning, smooth acceleration and deceleration, and the ability to follow complex trajectories. The controller’s effectiveness in generating accurate and responsive control signals directly impacts the motor’s motion control capabilities.

2. Feedback Control:

The controller utilizes feedback from position sensors, such as encoders, to monitor the motor’s actual position, speed, and other parameters. It compares the desired motion profile with the actual motor behavior and continuously adjusts the control signals to minimize any deviations or errors. This closed-loop feedback control mechanism allows the controller to compensate for disturbances, variations in load conditions, and other factors that may affect the motor’s performance. By continuously monitoring and adjusting the control signals based on feedback, the controller helps maintain accurate and stable motor operation.

3. PID Control:

Many servo motor controllers employ Proportional-Integral-Derivative (PID) control algorithms to regulate the motor’s behavior. PID control calculates control signals based on the error between the desired setpoint and the actual motor response. The proportional term responds to the present error, the integral term accounts for accumulated past errors, and the derivative term considers the rate of change of the error. By tuning the PID parameters, the controller can achieve optimal performance in terms of response time, stability, and steady-state accuracy. Properly configured and tuned PID control greatly influences the servo motor’s ability to follow commands accurately and efficiently.

4. Trajectory Planning:

In applications requiring complex motion profiles or trajectories, the controller plays a vital role in trajectory planning. It determines the optimal path and speed profile for the motor to follow, taking into account constraints such as acceleration limits, jerk limits, and mechanical limitations. The controller generates the required control signals to achieve the desired trajectory, ensuring smooth and precise motion. Effective trajectory planning by the controller enhances the motor’s performance in applications that involve intricate or high-speed movements.

5. System Monitoring and Protection:

The controller monitors various parameters of the servo motor system, including temperature, current, voltage, and other diagnostic information. It incorporates protective measures to prevent damage or excessive stress on the motor. The controller can implement safety features such as overcurrent protection, over-temperature protection, and fault detection mechanisms. By actively monitoring and safeguarding the motor and the system, the controller helps prevent failures, prolongs the motor’s lifespan, and ensures safe and reliable operation.

6. Communication and Integration:

The controller facilitates communication and integration with other components or systems within the overall automation setup. It may support various communication protocols, such as Ethernet, CAN bus, or fieldbus protocols, enabling seamless integration with higher-level control systems, human-machine interfaces (HMIs), or other peripheral devices. The controller’s ability to efficiently exchange data and commands with other system components allows for coordinated and synchronized operation, enhancing the overall performance and functionality of the servo motor system.

In summary, the controller plays a vital role in the overall performance of a servo motor system. It enables precise motion control, utilizes feedback for closed-loop control, implements PID control algorithms, plans complex trajectories, monitors system parameters, and facilitates communication and integration. The controller’s capabilities and effectiveness directly impact the motor’s performance in terms of accuracy, responsiveness, stability, and overall system efficiency.

servo motor

What is the significance of closed-loop control in servo motor operation?

Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:

1. Accuracy and Precision:

Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.

2. Stability and Repeatability:

Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.

3. Compensation for Disturbances:

One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.

4. Improved Response Time:

Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.

5. Adaptability to Changing Conditions:

Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.

In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China Hot selling Hall Sensor Incremental Encoder Feedback Electric BLDC Motor Servo High Torque 48V 2000W Brushless DC Motor   vacuum pump acChina Hot selling Hall Sensor Incremental Encoder Feedback Electric BLDC Motor Servo High Torque 48V 2000W Brushless DC Motor   vacuum pump ac
editor by CX 2024-02-08

China best Ce High Torque 400W Agv Rgv Robot Brushless DC Servo Motor with Encoder for Agv Robot with Great quality

Product Description

400W AGV RGV Robot With Encoder Brushless DC Servo Motor

Product Features
Protection grade:IP65, insulation grade:F
Winding overhang structure optimization, to minimize the copper loss and iron loss minimization, small volume, light weight, low temperature rise, high efficiency
Super high coercivity, the maximum magnetic energy product NdFe35 permanent magnetic materials, strong resistance to demagnetization, motor performance is stable.
Low noise, low vibration, low moment of inertia.
High torque, fast dynamic response, wide speed range, strong overload capacity (four times)

*High Torque to inertia ratio&up to 25000Nm/kgm²
*Fast dynamic response *time constant <20ms
*Wide speed adjusting&feedback up to 1000:1
*Steady speed precision up to 0.5%
*High overload,2Mn/30s,3.5N.m/10s
*Small volume and light
*Silent,the lowest noise is only 45dB(A)
*Protected with IP65,Class F insulation
Industry class
1.The altitude should be over 1000 CHINAMFG above sea level
2.Environment temperature:+5ºC~+40ºC
3.The month average tallest relative humidity is 90%,at the same the month average lowest temperature is less than 25

Model 80AS404-15
VOLT 48VDC
POWER 400W
SPEED 1500RPM
TORQUE 2.55N.M
ENCODER 2500PPR
APPLICATION AGV ROBOT,FIRE ROBOT,ELECTRIC VEHICLE

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Car
Operating Speed: Adjust Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 10
Customization:
Available

|

servo motor

Are there advancements or trends in servo motor technology that users should be aware of?

Yes, there have been significant advancements and emerging trends in servo motor technology that users should be aware of. These developments aim to enhance performance, improve efficiency, and provide new capabilities. Here are some noteworthy advancements and trends in servo motor technology:

1. Higher Power Density:

Advancements in servo motor design and manufacturing techniques have led to higher power densities. This means that modern servo motors can deliver more power in a smaller and lighter package. Higher power density allows for more compact and efficient machine designs, particularly in applications with limited space or weight restrictions.

2. Improved Efficiency:

Efficiency is a crucial aspect of servo motor technology. Manufacturers are continuously striving to improve motor efficiency to minimize energy consumption and reduce operating costs. Advanced motor designs, optimized winding configurations, and the use of high-quality materials contribute to higher efficiency levels, resulting in energy savings and lower heat generation.

3. Integration of Electronics and Control:

Integration of electronics and control functions directly into servo motors is becoming increasingly common. This trend eliminates the need for external motor controllers or drives, simplifies wiring and installation, and reduces overall system complexity. Integrated servo motors often include features such as on-board motion control, communication interfaces, and safety features.

4. Digitalization and Connectivity:

Servo motor technology is embracing digitalization and connectivity trends. Many modern servo motors come equipped with digital interfaces, such as Ethernet or fieldbus protocols, enabling seamless integration with industrial communication networks. This connectivity allows for real-time monitoring, diagnostics, and remote control of servo motors, facilitating condition monitoring, predictive maintenance, and system optimization.

5. Advanced Feedback Systems:

Feedback systems play a critical role in servo motor performance. Recent advancements in feedback technology have resulted in more accurate and higher-resolution encoders, resolvers, and sensors. These advanced feedback systems provide precise position and velocity information, enabling improved motion control, better accuracy, and enhanced dynamic response in servo motor applications.

6. Smart and Adaptive Control Algorithms:

Servo motor control algorithms have evolved to include smart and adaptive features. These algorithms can adapt to changing load conditions, compensate for disturbances, and optimize motor performance based on real-time feedback. Smart control algorithms contribute to smoother operation, increased stability, and improved tracking accuracy in various applications.

7. Safety and Functional Safety:

Safety is a paramount concern in industrial automation. Servo motor technology has incorporated safety features and functional safety standards to ensure the protection of personnel and equipment. Safety-rated servo motors often include features such as safe torque off (STO) functionality, safe motion control, and compliance with safety standards like ISO 13849 and IEC 61508.

It’s important for users to stay informed about these advancements and trends in servo motor technology. By understanding the latest developments, users can make informed decisions when selecting and implementing servo motors, leading to improved performance, efficiency, and reliability in their applications.

servo motor

How does the accuracy of a servo motor impact the precision of a system it operates in?

The accuracy of a servo motor has a significant impact on the precision of the system in which it operates. Here’s how the accuracy of a servo motor influences the precision of the system:

1. Positioning Control:

The accuracy of a servo motor directly affects the precision of positioning control in a system. A servo motor with high accuracy can accurately and consistently reach and maintain the desired position. This precision in positioning control is crucial in applications where precise movements, such as in robotics or manufacturing processes, are required. If the servo motor lacks accuracy, it may introduce position errors, leading to reduced precision in the system’s overall operation.

2. Repeatability:

Repeatability refers to the ability of a system to consistently achieve the same position or motion repeatedly. The accuracy of a servo motor plays a vital role in achieving high repeatability. A servo motor with high accuracy will consistently return to the same position when commanded to do so. This level of repeatability is essential in applications where consistent and precise movements are necessary, such as in assembly lines or pick-and-place operations. A lack of accuracy in the servo motor can result in variations in position from one cycle to another, reducing the overall precision of the system.

3. Error Compensation:

The accuracy of a servo motor is crucial for error compensation in a system. In many applications, external factors, such as variations in load or environmental conditions, can introduce errors in the system’s operation. An accurate servo motor can help compensate for these errors by precisely adjusting its position or motion based on feedback from sensors. This error compensation capability contributes to maintaining the precision of the system, as the servo motor can continuously adjust to minimize any deviations from the desired position or trajectory.

4. System Stability:

The accuracy of the servo motor also impacts the stability of the system. A servo motor with high accuracy can achieve stable movements and maintain control over the system’s dynamics. It can respond accurately to control signals, preventing overshoot, oscillations, or erratic behaviors that can degrade system precision. On the other hand, a servo motor with lower accuracy may introduce instability or erratic movements, compromising the overall precision of the system.

5. System Calibration and Calibration:

An accurate servo motor simplifies the calibration and fine-tuning process of a system. When a system requires calibration, an accurate servo motor provides a reliable reference point for adjustments. The precise and consistent movements of the servo motor make it easier to calibrate other components or subsystems in the system, ensuring that the entire system operates with the desired precision. If the servo motor lacks accuracy, it can be challenging to calibrate the system effectively, resulting in reduced precision in the system’s operation.

In summary, the accuracy of a servo motor has a direct impact on the precision of the system it operates in. An accurate servo motor enables precise positioning control, high repeatability, effective error compensation, system stability, and simplified calibration processes. These factors collectively contribute to achieving the desired precision in the system’s operation. Therefore, selecting a servo motor with the appropriate level of accuracy is crucial for ensuring the overall precision and performance of the system.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China best Ce High Torque 400W Agv Rgv Robot Brushless DC Servo Motor with Encoder for Agv Robot   with Great quality China best Ce High Torque 400W Agv Rgv Robot Brushless DC Servo Motor with Encoder for Agv Robot   with Great quality
editor by CX 2024-02-06