Tag Archives: quality vacuum pump

China Best Sales Servo Motor High Speed Electric/Electrical Drive High Speed Electromagnetic AC High Quality Synchronous Motor vacuum pump brakes

Product Description

Product Description:
H series permanent magnet synchronous motor is a high efficiency and energy saving motor independently developed and produced by Hui Xunjun. It uses permanent magnet material to generate magnetic field, which has high efficiency, reliable operation, small size, light weight, energy saving and environmental protection, and low noise. It can be matched with servo drive, and realize precise walking and reversing through cooperative motion between servo drive and servo drive, realizing fast response, high stability and high precision control in the whole motion control process. According to the customer’s own characteristics can quickly provide professional customized services. Widely used in machine tools, textile, rewinding, air compressor, fan pump and other industries.

Name plate:

 

180 series specifications:

Product Feature:

 

 

 

 

Technical Specification:

Scope of application:

DIMENSION:(UNIT:MM)

Factory outline: 
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Starting Mode: Direct on-line Starting
Certification: ISO9001
Customization:
Available

|

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China Best Sales Servo Motor High Speed Electric/Electrical Drive High Speed Electromagnetic AC High Quality Synchronous Motor   vacuum pump brakesChina Best Sales Servo Motor High Speed Electric/Electrical Drive High Speed Electromagnetic AC High Quality Synchronous Motor   vacuum pump brakes
editor by CX 2024-05-16

China high quality Servo Motor 7.5kw 1500rpm High Speed Electric/Electrical Drive High Speed Electromagnetic AC High Quality Synchronous Motor vacuum pump and compressor

Product Description

Product Description:
H series permanent magnet synchronous motor is a high efficiency and energy saving motor independently developed and produced by Hui Xunjun. It uses permanent magnet material to generate magnetic field, which has high efficiency, reliable operation, small size, light weight, energy saving and environmental protection, and low noise. It can be matched with servo drive, and realize precise walking and reversing through cooperative motion between servo drive and servo drive, realizing fast response, high stability and high precision control in the whole motion control process. According to the customer’s own characteristics can quickly provide professional customized services. Widely used in machine tools, textile, rewinding, air compressor, fan pump and other industries.

Name plate:

 

180 series specifications:

Product Feature:

 

 

 

 

Technical Specification:

Scope of application:

DIMENSION:(UNIT:MM)

Factory outline: 
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Starting Mode: Direct on-line Starting
Certification: ISO9001
Customization:
Available

|

servo motor

Where can individuals find reliable resources for learning more about servo motors and their applications?

Individuals interested in learning more about servo motors and their applications can access a variety of reliable resources. These resources provide valuable information, technical knowledge, and practical insights. Here are some places where individuals can find reliable resources for expanding their understanding of servo motors:

1. Manufacturer Websites:

Leading servo motor manufacturers often provide detailed documentation, technical specifications, application notes, and white papers on their websites. These resources offer in-depth information about their products, technologies, and best practices for servo motor applications. Users can visit the websites of prominent manufacturers to access reliable and up-to-date information.

2. Industry Associations and Organizations:

Industry associations and organizations related to automation, robotics, or specific industries often offer educational materials and resources on servo motors. They may provide technical publications, webinars, seminars, and training programs focused on servo motor technology and applications. Examples of such organizations include the International Society of Automation (ISA), the Robotics Industries Association (RIA), and the Society of Automotive Engineers (SAE).

3. Books and Technical Publications:

Books dedicated to servo motor technology, control systems, and industrial automation can provide comprehensive knowledge on the subject. Some recommended titles include “Servo Motors and Industrial Control Theory” by Riazollah Firoozian, “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and Bill Drury, and “Servo Motors and Motion Control: An Introduction” by Albert F. Seabury. Technical publications and journals such as IEEE Transactions on Industrial Electronics and Control Engineering Practice also offer valuable insights and research findings.

4. Online Courses and Training Platforms:

Various online learning platforms offer courses and training programs focused on servo motors and their applications. Websites like Udemy, Coursera, and LinkedIn Learning provide access to video-based courses taught by industry experts. These courses cover topics such as servo motor fundamentals, motion control, programming, and troubleshooting. By enrolling in these courses, individuals can acquire structured knowledge and practical skills related to servo motors.

5. Technical Forums and Discussion Groups:

Participating in technical forums and discussion groups can be an effective way to learn from industry professionals and enthusiasts. Websites like Stack Exchange, Reddit, and engineering-focused forums host discussions on servo motors, where individuals can ask questions, share experiences, and gain insights from the community. It’s important to verify the credibility of the information shared in such forums and rely on responses from trusted contributors.

6. Trade Shows and Conferences:

Attending trade shows, exhibitions, and conferences related to automation, robotics, or specific industries can provide opportunities to learn about servo motors. These events often feature presentations, workshops, and demonstrations by industry experts and manufacturers. Participants can gain hands-on experience, interact with professionals, and stay updated with the latest advancements in servo motor technology.

By leveraging these reliable resources, individuals can deepen their knowledge and understanding of servo motors and their applications. It is advisable to consult multiple sources and cross-reference information to ensure a comprehensive understanding of the subject.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China high quality Servo Motor 7.5kw 1500rpm High Speed Electric/Electrical Drive High Speed Electromagnetic AC High Quality Synchronous Motor   vacuum pump and compressor	China high quality Servo Motor 7.5kw 1500rpm High Speed Electric/Electrical Drive High Speed Electromagnetic AC High Quality Synchronous Motor   vacuum pump and compressor
editor by CX 2024-05-16

China factory High Quality 220V, 2.4nm, 750W 3000r/Min AC Servo Motor for Boat Electric Motor vacuum pump booster

Product Description

High Quality 220V, 2.4nm,750w 3000r/Min AC Servo  Motor For Boat Electric Motor

SZGH-08075DC(H)   is 750W servo motor ,optimizing design, compact, beautiful contour,  long-term continuous working  in rated working mode and economic type 

Packing list : 

1) SZGH-08075DC(H)  750w servo motor -1pcs 

2) SZGH-SD2571  220v servo driver – 1pcs 

3) SZGH1MX-5M  5meter motor cables -1pcs 

4) SZGH1EX-5M   5 meter encoder cables -1 pcs 

5) Manual  -1pcs 

Pls tell us at first time when you need : 

1) Brake motor 

2) 2500PPR encoder  

3) long cables 

Product Description

 

 

 

Rated Power 

7500W

Rated torque 

2.4NM

Rated Speed  3000RPM 

Rated Curret 

3A 

Rated Voltage 

220V

Encoder 

17bit   

 

 

Description of  Driver 

Input  Power : Single Three Phase AC220V-15%~+10% SO/60HZ

Control model : 

0: Position Control;  1:Speed Control;  

2: Torque Control; 3:Position/Speed Control;

4·PositionTorque Control: 5:Speed Torque Control

Protective Function : Over-speed Over-voltage Under-voltage Over-current OverloadEncoder Error/ Control Power Eror/ Position Offset Eror

Driver Load : Less than 3times of rotor inertia 

Display : 5 bits LED indicator display  4 Operate keys

Communication : RS485

Position Control : Input Model , Electric Ratio 

 

 

 

Product Parameters

 

Certifications

Packaging & Shipping

 

1.Industrial packing: plastic bag +foam boxes+ carton +wooden pallets 2.Commercial packing: plastic bag+ foam boxes + carton

3.As the clients requirement

Delivery Detail: Normally ready goods and stock within 2- 5days

 

Company Profile

HangZhou CHINAMFG Automation CO.,LTD (Formerly known as ‘HangZhou CHINAMFG Automation  Co.,Limited(Built in 19 November 2571)’) is 1 of the leading CNC & automatic company in China, specialized in designing projects, marketing, and oversea trading, having extensive experience in CNC package solution, Our focus has been on providing the high quality of Industrial robot arm   Lathe CNC system, Milling CNC system, Engraving CNC system, Grinding & router CNC system, Motor & driver, Spindle servo motor & driver, Gear reducer. 

SZGH’ products have been in working with a wide variety of CNC machinery and automatic processing equipment with high performance and good precision, stably. We have now established a reliable structure , our experienced engineers and technicians are able to provide professional consultancy and offer you most suitable CNC application solution.

Our strict quality control measures guarantee excellent reliability and high standard of quality. Utilizing advanced CNC machinery to test every product, 100 percent inspection is made before packaging and shipment. Moreover, We also offer flexible lead times to support your business.

We have a large number of customers across Asia, America, the Middle East, Europe, South America, and Africa. Specially we already built own business corporate group in Middle East market.

 

Our Advantages

 

After Sales Service

Best & Professional after- sales supports 

Our company have very professional engineers teams ;

We can provide the professional after -sales service to our all clients ;

Here is our engineer Mike solved the problems for our customer ;

Best supports !! Quicly reply !!

Buy at ease , use at ease !!!

FAQ

Q: Do you support customized manufacturing?
A: Yes,we can customized manufacturing according to customer’s requirment. We support to OEM your own company display interface
and logo.

Q: How long is your delivery time?
A: Generally it is 3-5 days if the goods are in stock. or it is 5-10 days if the goods are not in stock, it is according to
quantity.10-20 days if customized manufacturing.

Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample with sample price.
Q: What is your terms of payment ?
A: Payment=1000USD, 70% T/T in advance ,balance before shippment.

If you have another question, pls feel free to contact us as below

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Machine Tool
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Explosion-Proof Type
Number of Poles: 4
Customization:
Available

|

servo motor

Are there common issues or challenges associated with servo motor systems, and how can they be addressed?

Servo motor systems are widely used in various applications, but they can encounter common issues or challenges that affect their performance and reliability. Let’s explore some of these issues and discuss potential solutions:

1. Positioning and Tracking Errors:

One common challenge in servo motor systems is positioning and tracking errors. These errors can occur due to factors such as mechanical backlash, encoder resolution limitations, or disturbances in the system. To address this issue, careful calibration and tuning of the servo control system are necessary. This includes adjusting feedback gains, implementing feedback filtering techniques, and utilizing advanced control algorithms to improve the system’s accuracy and minimize errors. Additionally, employing high-resolution encoders and backlash compensation mechanisms can help enhance the positioning and tracking performance.

2. Vibration and Resonance:

Vibration and resonance can impact the performance of servo motor systems, leading to reduced accuracy and stability. These issues can arise from mechanical resonances within the system or external disturbances. To mitigate vibration and resonance problems, it is crucial to analyze the system’s dynamics and identify critical resonant frequencies. Implementing vibration dampening techniques such as mechanical isolation, using vibration-absorbing materials, or employing active vibration control methods can help minimize the effect of vibrations and improve the system’s performance.

3. Overheating and Thermal Management:

Servo motors can generate heat during operation, and inadequate thermal management can lead to overheating and potential performance degradation. To address this issue, proper cooling and thermal management techniques should be employed. This may involve using heat sinks, fans, or liquid cooling systems to dissipate heat efficiently. Ensuring adequate ventilation and airflow around the motor and avoiding excessive current or overloading can also help prevent overheating. Monitoring the motor’s temperature and implementing temperature protection mechanisms can further safeguard the motor from thermal damage.

4. Electrical Noise and Interference:

Electrical noise and interference can affect the performance and reliability of servo motor systems. These issues can arise from electromagnetic interference (EMI) or radio frequency interference (RFI) from nearby equipment or electrical sources. To mitigate electrical noise, proper shielding and grounding techniques should be employed. Using shielded cables, ferrite cores, and grounding the motor and control system can help minimize the impact of noise and interference. Additionally, employing filtering techniques and surge protection devices can further improve system robustness against electrical disturbances.

5. System Integration and Compatibility:

Integrating a servo motor system into a larger control system or automation setup can present challenges in terms of compatibility and communication. Ensuring proper compatibility between the servo motor and the control system is crucial. This involves selecting appropriate communication protocols, such as EtherCAT or Modbus, and ensuring compatibility with the control signals and interfaces. Employing standardized communication interfaces and protocols can facilitate seamless integration and interoperability. Additionally, thorough testing and verification of the system’s compatibility before deployment can help identify and address any integration issues.

6. Maintenance and Service:

Maintenance and service requirements are important considerations for servo motor systems. Regular maintenance, including lubrication, inspection, and cleaning, can help prevent issues related to wear and tear. Following manufacturer-recommended maintenance schedules and procedures is essential to ensure the longevity and optimal performance of the motor. In case of any malfunctions or failures, having access to technical support from the manufacturer or trained service personnel can help diagnose and address problems effectively.

By being aware of these common issues and challenges associated with servo motor systems and implementing appropriate solutions, it is possible to enhance the performance, reliability, and lifespan of the servo motor system. Regular monitoring, proactive maintenance, and continuous improvement can contribute to optimizing the overall operation and efficiency of the system.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

In which industries are servo motors commonly used, and what applications do they serve?

Servo motors are widely used across various industries due to their precise control capabilities and ability to deliver high torque at different speeds. Here are some industries where servo motors are commonly employed, along with their applications:

1. Robotics:

Servo motors are extensively used in robotics to control the movement of robotic limbs and joints. They enable precise positioning and accurate control, allowing robots to perform tasks with high accuracy and repeatability. Servo motors are also employed in humanoid robots, industrial manipulators, and collaborative robots (cobots).

2. Manufacturing and Automation:

In manufacturing and automation industries, servo motors are used in various applications such as conveyor systems, pick-and-place machines, packaging equipment, and assembly lines. Servo motors provide precise control over the movement of components, ensuring accurate positioning, fast response times, and high throughput.

3. CNC Machining:

Servo motors play a vital role in computer numerical control (CNC) machines, where they control the movement of axes (e.g., X, Y, and Z). These motors enable precise and smooth motion, allowing CNC machines to accurately shape and cut materials such as metal, wood, and plastics. Servo motors are also used in CNC routers, milling machines, lathes, and laser cutting equipment.

4. Aerospace and Aviation:

Servo motors find applications in the aerospace and aviation industries, particularly in flight control systems. They are used to control the movement of aircraft surfaces, such as ailerons, elevators, rudders, and flaps. Servo motors ensure precise and responsive control, contributing to the stability and maneuverability of aircraft.

5. Medical Devices:

In the medical field, servo motors are used in various devices and equipment. They are employed in robotic surgery systems, prosthetics, exoskeletons, infusion pumps, diagnostic equipment, and laboratory automation. Servo motors enable precise and controlled movements required for surgical procedures, rehabilitation, and diagnostic tests.

6. Automotive:

Servo motors have several applications in the automotive industry. They are used in electric power steering systems, throttle control, braking systems, and active suspension systems. Servo motors provide accurate control over steering, acceleration, and braking, enhancing vehicle safety and performance.

7. Entertainment and Motion Control:

Servo motors are widely used in the entertainment industry for animatronics, special effects, and motion control systems. They enable realistic movements of animatronic characters, robotic props, and camera rigs in film, television, and theme park attractions. Servo motors also find applications in motion simulators, gaming peripherals, and virtual reality systems.

In addition to these industries, servo motors are utilized in various other fields, including industrial automation, renewable energy systems, textile machinery, printing and packaging, and scientific research.

Overall, servo motors are versatile components that find widespread use in industries requiring precise motion control, accurate positioning, and high torque output. Their applications span across robotics, manufacturing, CNC machining, aerospace, medical devices, automotive, entertainment, and numerous other sectors.

China factory High Quality 220V, 2.4nm, 750W 3000r/Min AC Servo Motor for Boat Electric Motor   vacuum pump booster	China factory High Quality 220V, 2.4nm, 750W 3000r/Min AC Servo Motor for Boat Electric Motor   vacuum pump booster
editor by CX 2024-05-15

China Best Sales Best Quality G5.186.5141 Servo Drive Motor for Heidelberg Printing Machinery Offset Press Spare Parts vacuum pump oil

Product Description

Product Description

 

Product: Motor
Model: G5.186.5141 
Weight: 2KG/PCS
Packing of goods: 1PCS
Using the model: Heidelberg
Place of origin China
Applicable Industries: Pirnting shops/ factory/ repair shop
Printing type: Offset printing
Advantages: 1. Good quality and cheap.
2. We will test the goods before shipment. Make sure all parts are working well.
3. We have a large stock of parts, Shipped within 2-3 working days after payment, Send by DHL, FedEx, UPS etc.
4. We provide 3-12 months warranty.
5. Available in various qualities.(Original new, Original used and Made in China)

 

Detailed Photos

 

Exhibition

 

Packaging & Shipping

Company Profile

 

 

HangZhou Xihu (West Lake) Dis.g Printing Equipment Co., Ltd. was founded in 2011 and has been established for 12 years. After years of effort and development, it has developed from a small storefront to a professional team with certain strength and scale. It now has a skilled maintenance and production team with excellent product quality and strong professional safety technical services, providing high-quality products and technical services to different partners. Our company sells Heidelberg, Manroland original second-hand accessories, original new accessories, self-developed accessories, second-hand printing machine sales. The variety is complete and the price is reasonable. The company values credit, ensures product and service quality, and has won the trust of a large number of customers with its diversified business characteristics and the principle of small profits and quick sales.
Efficient, professional, and professional quality are the key to professionalism. We build our brand with quality and win your trust with our efficient service attitude. Welcome to cooperate with you!!!
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provided
Warranty: Provided
Usage: For Heidelberg Printer
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

What role does the controller play in the overall performance of a servo motor?

The controller plays a crucial role in the overall performance of a servo motor system. It is responsible for monitoring and regulating the motor’s operation to achieve the desired motion and maintain system stability. Let’s explore in detail the role of the controller in the performance of a servo motor:

1. Motion Control:

The controller is responsible for generating precise control signals that dictate the motor’s speed, torque, and position. It receives input commands from the user or higher-level control system and translates them into appropriate control signals for the servo motor. By accurately controlling the motor’s motion, the controller enables precise positioning, smooth acceleration and deceleration, and the ability to follow complex trajectories. The controller’s effectiveness in generating accurate and responsive control signals directly impacts the motor’s motion control capabilities.

2. Feedback Control:

The controller utilizes feedback from position sensors, such as encoders, to monitor the motor’s actual position, speed, and other parameters. It compares the desired motion profile with the actual motor behavior and continuously adjusts the control signals to minimize any deviations or errors. This closed-loop feedback control mechanism allows the controller to compensate for disturbances, variations in load conditions, and other factors that may affect the motor’s performance. By continuously monitoring and adjusting the control signals based on feedback, the controller helps maintain accurate and stable motor operation.

3. PID Control:

Many servo motor controllers employ Proportional-Integral-Derivative (PID) control algorithms to regulate the motor’s behavior. PID control calculates control signals based on the error between the desired setpoint and the actual motor response. The proportional term responds to the present error, the integral term accounts for accumulated past errors, and the derivative term considers the rate of change of the error. By tuning the PID parameters, the controller can achieve optimal performance in terms of response time, stability, and steady-state accuracy. Properly configured and tuned PID control greatly influences the servo motor’s ability to follow commands accurately and efficiently.

4. Trajectory Planning:

In applications requiring complex motion profiles or trajectories, the controller plays a vital role in trajectory planning. It determines the optimal path and speed profile for the motor to follow, taking into account constraints such as acceleration limits, jerk limits, and mechanical limitations. The controller generates the required control signals to achieve the desired trajectory, ensuring smooth and precise motion. Effective trajectory planning by the controller enhances the motor’s performance in applications that involve intricate or high-speed movements.

5. System Monitoring and Protection:

The controller monitors various parameters of the servo motor system, including temperature, current, voltage, and other diagnostic information. It incorporates protective measures to prevent damage or excessive stress on the motor. The controller can implement safety features such as overcurrent protection, over-temperature protection, and fault detection mechanisms. By actively monitoring and safeguarding the motor and the system, the controller helps prevent failures, prolongs the motor’s lifespan, and ensures safe and reliable operation.

6. Communication and Integration:

The controller facilitates communication and integration with other components or systems within the overall automation setup. It may support various communication protocols, such as Ethernet, CAN bus, or fieldbus protocols, enabling seamless integration with higher-level control systems, human-machine interfaces (HMIs), or other peripheral devices. The controller’s ability to efficiently exchange data and commands with other system components allows for coordinated and synchronized operation, enhancing the overall performance and functionality of the servo motor system.

In summary, the controller plays a vital role in the overall performance of a servo motor system. It enables precise motion control, utilizes feedback for closed-loop control, implements PID control algorithms, plans complex trajectories, monitors system parameters, and facilitates communication and integration. The controller’s capabilities and effectiveness directly impact the motor’s performance in terms of accuracy, responsiveness, stability, and overall system efficiency.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China Best Sales Best Quality G5.186.5141 Servo Drive Motor for Heidelberg Printing Machinery Offset Press Spare Parts   vacuum pump oil	China Best Sales Best Quality G5.186.5141 Servo Drive Motor for Heidelberg Printing Machinery Offset Press Spare Parts   vacuum pump oil
editor by CX 2024-05-07

China high quality Ipmsm Electric AC Servo High Speed High Power Motor for Industrial Usage vacuum pump brakes

Product Description

IPMSM Electric AC Servo High Speed High Power Motor for Industrial Usage

Product Feature
1.Suitable for the 24000rpm high speed
2.Reserve a large margin of security
3.High power & high torque
4.High efficiency
5.Small size
6.Low noise low vibration
7.The autonomous patented cooling structure

Specifications
Model#: SRPM205H4XO200
Voltage: 380V AC
Rated Power: 200KW
Rate Torque : 95.5 N.m
Working speed: 20000rpm
Efficiency: 96.5%
Duty Type: S1
Isolation: H/F
Water/dust Proof: IP54(IP67 option)
Pole Number: 4
N Weight: 95KG
Cooling Method: Oil
Position Signal: Resolver (optional)

Application
High-speed Compressors,Fans,Pumps

About MC Motor
MC Motor Technology Co., Ltd is a leading high-tech enterprises which focuses on the design, research and manufacture of the new generation high speed permanent magnet motors, which are widely used in industrial, agriculture, mining, building service, water-treatment, automotive and other new emerging industries.
In the past few years, MC Motor leads a series of technological innovations, and made remarkable achievements, includes:
1.Obtains CHINAMFG reserved intellectual property rights about approximately 1 hundred core technologies, most of which have been successfully applied to our motors
2.Achieved more than 50 new designed PM high speed motors from 8KW to 200KW, 5000rpm to 24000rpm, which have much higher efficiency, power density, reliability and smaller size & lighter weight than other similar PM motor.
3.Forms mature production lines and professional & excellent teams of management, R&D, marketing and sales, obtains very good reputation from our clients world-widely.
 MC MOTOR has international standard QC management system to make sure every production process strictly complies with ISO9001-2015.

Shipping direction
1. Sample order: our stock cargos L/T 1~3 days, customized 45~60 days
2. Mass production order: 15~25 days based on the quantity
3. By air: we normally take DHL/FEDEX/UPS/TNT or other door to door service
4. By sea: LCL/FCL are both ok

Payment method
1. we accept T/T, WESTERN UNION, PAYPAL , L/C at sight or ALIBABA ASSURANCE
2. 30% deposit, 70% before shipping (Amount more than 5000USD)

Motor type Voltage
(V AC)
Rated power
(kW)
Rated torque (N.m) Rated speed
(rpm)
Efficiency
(%)
Duty type  Insulation Ingress protection Pole Number Weight
(kg)
Cooling Method position signal
SRPM160H4XO15 380 15 5.96 24000 96.5 S1 H/F IP67 4 12 Oil  Resolver
SRPM160H4XO75 380 75 35.8 24000 96.5 S1 H/F IP67 4 44 Oil  Resolver
SRPM160H4XO90 380 90 43 24000 96.5 S1 H/F IP67 4 48 Oil  Resolver
SRPM205H4XO110 380 110 52.5 24000 96.5 S1 H/F IP67 4 76 Oil  Resolver
SRPM205H4XO160 380 160 76.4 24000 96.5 S1 H/F IP67 4 86 Oil  Resolver

MC MOTOR provides not only our best products but also  different solutions, which is the key competitive capabilty
Welcome to send us your request details, we will reply in 8 hours

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Power Tools, High-Speed Compressors
Operating Speed: High Speed
Operation Mode: Electric Motor
Magnetic Structure: Permanent Magnet
Function: Driving
Structure: Rotating Pole Type (Armature Fixed)
Customization:
Available

|

servo motor

Are there common issues or challenges associated with servo motor systems, and how can they be addressed?

Servo motor systems are widely used in various applications, but they can encounter common issues or challenges that affect their performance and reliability. Let’s explore some of these issues and discuss potential solutions:

1. Positioning and Tracking Errors:

One common challenge in servo motor systems is positioning and tracking errors. These errors can occur due to factors such as mechanical backlash, encoder resolution limitations, or disturbances in the system. To address this issue, careful calibration and tuning of the servo control system are necessary. This includes adjusting feedback gains, implementing feedback filtering techniques, and utilizing advanced control algorithms to improve the system’s accuracy and minimize errors. Additionally, employing high-resolution encoders and backlash compensation mechanisms can help enhance the positioning and tracking performance.

2. Vibration and Resonance:

Vibration and resonance can impact the performance of servo motor systems, leading to reduced accuracy and stability. These issues can arise from mechanical resonances within the system or external disturbances. To mitigate vibration and resonance problems, it is crucial to analyze the system’s dynamics and identify critical resonant frequencies. Implementing vibration dampening techniques such as mechanical isolation, using vibration-absorbing materials, or employing active vibration control methods can help minimize the effect of vibrations and improve the system’s performance.

3. Overheating and Thermal Management:

Servo motors can generate heat during operation, and inadequate thermal management can lead to overheating and potential performance degradation. To address this issue, proper cooling and thermal management techniques should be employed. This may involve using heat sinks, fans, or liquid cooling systems to dissipate heat efficiently. Ensuring adequate ventilation and airflow around the motor and avoiding excessive current or overloading can also help prevent overheating. Monitoring the motor’s temperature and implementing temperature protection mechanisms can further safeguard the motor from thermal damage.

4. Electrical Noise and Interference:

Electrical noise and interference can affect the performance and reliability of servo motor systems. These issues can arise from electromagnetic interference (EMI) or radio frequency interference (RFI) from nearby equipment or electrical sources. To mitigate electrical noise, proper shielding and grounding techniques should be employed. Using shielded cables, ferrite cores, and grounding the motor and control system can help minimize the impact of noise and interference. Additionally, employing filtering techniques and surge protection devices can further improve system robustness against electrical disturbances.

5. System Integration and Compatibility:

Integrating a servo motor system into a larger control system or automation setup can present challenges in terms of compatibility and communication. Ensuring proper compatibility between the servo motor and the control system is crucial. This involves selecting appropriate communication protocols, such as EtherCAT or Modbus, and ensuring compatibility with the control signals and interfaces. Employing standardized communication interfaces and protocols can facilitate seamless integration and interoperability. Additionally, thorough testing and verification of the system’s compatibility before deployment can help identify and address any integration issues.

6. Maintenance and Service:

Maintenance and service requirements are important considerations for servo motor systems. Regular maintenance, including lubrication, inspection, and cleaning, can help prevent issues related to wear and tear. Following manufacturer-recommended maintenance schedules and procedures is essential to ensure the longevity and optimal performance of the motor. In case of any malfunctions or failures, having access to technical support from the manufacturer or trained service personnel can help diagnose and address problems effectively.

By being aware of these common issues and challenges associated with servo motor systems and implementing appropriate solutions, it is possible to enhance the performance, reliability, and lifespan of the servo motor system. Regular monitoring, proactive maintenance, and continuous improvement can contribute to optimizing the overall operation and efficiency of the system.

servo motor

What is the significance of closed-loop control in servo motor operation?

Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:

1. Accuracy and Precision:

Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.

2. Stability and Repeatability:

Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.

3. Compensation for Disturbances:

One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.

4. Improved Response Time:

Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.

5. Adaptability to Changing Conditions:

Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.

In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China high quality Ipmsm Electric AC Servo High Speed High Power Motor for Industrial Usage   vacuum pump brakesChina high quality Ipmsm Electric AC Servo High Speed High Power Motor for Industrial Usage   vacuum pump brakes
editor by CX 2024-04-25

China Good quality 0.25 Kw Three Phase Induction Starter Electric Motor for Servos System vacuum pump distributors

Product Description

0.25 Kw Three Phase Induction Starter Electric Motor for Servos System

Product Parameters

 

Frame Size: H56-355
Rated Output: 0.12-315 KW 
Rated Voltage: 220-660V
Rated Frequency: 50 Hz / 60 Hz
Poles: 2 / 4 / 6 / 8 / 10
Speed: 590 -2980 r/min
Ambient Temperature: -15°C-40°C
Model of CONEECTION: Y-Connection for 3 KW motor or less while Delta-Connection for 4 KW motor or more
Mounting: B3; B35; B34; B14; B5; V1
Current: 1.5-465 A (AC)
Duty: continuous (S1)
Insulation Class:
Protection Class: IP44
Cooling Method: ICO 141 Standards
Altitude: No more than 1,000 CHINAMFG above sea level
Packing: 63-132 frame be packaged by carton&pallet
160-355 frame be packaged by plywood case

 

Our Advantages

HangZhouda Motors Factory Advantages.

Prompt Quotation.
Competitive Price
Guaranteed Quality
Timely Delivery.
100% Tested.
Sincere and Professional Service.
Outstanding Finishing Surface.
Strictly and Perfect Management is guaranteed for Production.
Specialized in Manufacturing and Supplying a wide range of Electric Motors since year 2002.
Have Rich Experience and Strong ability to Develop New Products.
Have Ability to Design the Products Based on Your Original Samples.

WHAT WE DO AT HangZhouDA
Stamping of lamination
Rotor die-casting
Winding and inserting -both manual and semi-automatically
Vacuum varnishing
Machining shaft, housing, end shields, etc^
Rotor balancing
Motor assembly
Painting – both wet paint and powder coating
Inspecting spare parts every processing
100% test after each process and final test before packing.
WHAT HangZhouDA CAN DO FOR CUSTOMERS
HangZhouda supplies standard products to customers.
HangZhouda supplies standard products under customers’ brands and packaging, etc
HangZhouda R&D department develops any new products together with the customers.
We Promise you all the time after you working with us for CHINAMFG Business.
Prompt Reply to Your Inquiry within 24 Hs during Working Days.

Detailed Photos

Company Profile

HangZhouda Technology Co., Ltd. is a modern enterprise that integrates scientific research, production, sales, and service. The company has advanced production equipment, first-class testing equipment, professional R&D personnel, and an excellent management team. Multiple products have been patented. And it has 3 subsidiaries: HangZhouda Motor, HangZhouda Welding Machine, and HangZhouda Welding Materials.

The company’s motor products mainly include various series of products such as YBX3, YBX4, YE3, YE4, YBBP, YVF, YBF3, YSF3 three-phase motors, etc. The products have passed 3C certification, CE certification, IS09000-2015 quality management system certification, and have obtained QS production license, EX explosion-proof certificate, export product quality license, etc. The products are exported to both domestic and foreign markets.

The company implements a sustainable development strategy, upholds the business philosophy of “integrity, pragmatism, efficiency, and innovation”, always adheres to the policy of “people-oriented, quality wins”, and establishes a good corporate image with advanced equipment, scientific management, meticulous design, exquisite craftsmanship, and high-quality service. The company is based in the industry and dedicated to society with high standard product quality, discounted prices, and comprehensive and thoughtful services.

FAQ

Q1: Are you a factory or a trading company?
A1: As a manufacturer, we have many years of experience in the development and production of motors and industrial fans

Q2: Do you provide customized services?
A2: Of course, both OEM and ODM are available.

Q3: How to obtain a quotation?
A3: Regarding your purchase request, please leave us a message and we will reply to you within 1 hour of working hours.

Q4: Can I buy 1 as a sample?
A4: Of course.

Q5: How is your quality control?
A5: Our professional QC will inspect the quality during the production process and conduct quality testing before shipment.

Q6: What warranty do you offer?
A6: Within 1 year, during the warranty period, we will provide free easily damaged parts to solve any problems that may occur except for incorrect operation.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Power Tools
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Squirrel-Cage
Casing Protection: Closed Type
Samples:
US$ 39/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China Good quality 0.25 Kw Three Phase Induction Starter Electric Motor for Servos System   vacuum pump distributorsChina Good quality 0.25 Kw Three Phase Induction Starter Electric Motor for Servos System   vacuum pump distributors
editor by CX 2024-04-12

China Good quality CHINAMFG NEMA34 DMA860h 2phase Stepper Motor Closed Loop Servo Driver 7.2A 18V~70V vacuum pump booster

Product Description

Product Description

Product name

Engraving machine driver

 

Key words

Stepper Motor Drive

 

Application

Automatic Product

 

Voltage

18V-70V

 

Weight

400g

 

cooling method

natural cooling

 

Use temperature

0-50°C

 

Output current

2.4A-7.2A

 

input power supply

24V-100V

 

drive mode

PWM

The DMA860H Stepper Driver Board Controller is a high performance microstepping driver based on
pure-sinusoidal current control technology. With this technology and the self-adjustment technology
(self-adjust current control parameters) for different motors, the drive motors can run with smaller
noise,lower heating, smoother movement and have better performances at higher speed than most
of the drivers in the markets. It is suitable for driving 2-phase and 4-phase hybrid stepping motors,
so the Nema23, Nema34 and Nema42 stepper motors with a 2.6A-7.2A current will be suitable.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: DSP
Product Name: Engraving Machine Driver
Key Words: Stepper Motor Drive
Application: Automatic Product
Voltage: 18V-70V
Weight: 400g
Customization:
Available

|

servo motor

Where can individuals find reliable resources for learning more about servo motors and their applications?

Individuals interested in learning more about servo motors and their applications can access a variety of reliable resources. These resources provide valuable information, technical knowledge, and practical insights. Here are some places where individuals can find reliable resources for expanding their understanding of servo motors:

1. Manufacturer Websites:

Leading servo motor manufacturers often provide detailed documentation, technical specifications, application notes, and white papers on their websites. These resources offer in-depth information about their products, technologies, and best practices for servo motor applications. Users can visit the websites of prominent manufacturers to access reliable and up-to-date information.

2. Industry Associations and Organizations:

Industry associations and organizations related to automation, robotics, or specific industries often offer educational materials and resources on servo motors. They may provide technical publications, webinars, seminars, and training programs focused on servo motor technology and applications. Examples of such organizations include the International Society of Automation (ISA), the Robotics Industries Association (RIA), and the Society of Automotive Engineers (SAE).

3. Books and Technical Publications:

Books dedicated to servo motor technology, control systems, and industrial automation can provide comprehensive knowledge on the subject. Some recommended titles include “Servo Motors and Industrial Control Theory” by Riazollah Firoozian, “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and Bill Drury, and “Servo Motors and Motion Control: An Introduction” by Albert F. Seabury. Technical publications and journals such as IEEE Transactions on Industrial Electronics and Control Engineering Practice also offer valuable insights and research findings.

4. Online Courses and Training Platforms:

Various online learning platforms offer courses and training programs focused on servo motors and their applications. Websites like Udemy, Coursera, and LinkedIn Learning provide access to video-based courses taught by industry experts. These courses cover topics such as servo motor fundamentals, motion control, programming, and troubleshooting. By enrolling in these courses, individuals can acquire structured knowledge and practical skills related to servo motors.

5. Technical Forums and Discussion Groups:

Participating in technical forums and discussion groups can be an effective way to learn from industry professionals and enthusiasts. Websites like Stack Exchange, Reddit, and engineering-focused forums host discussions on servo motors, where individuals can ask questions, share experiences, and gain insights from the community. It’s important to verify the credibility of the information shared in such forums and rely on responses from trusted contributors.

6. Trade Shows and Conferences:

Attending trade shows, exhibitions, and conferences related to automation, robotics, or specific industries can provide opportunities to learn about servo motors. These events often feature presentations, workshops, and demonstrations by industry experts and manufacturers. Participants can gain hands-on experience, interact with professionals, and stay updated with the latest advancements in servo motor technology.

By leveraging these reliable resources, individuals can deepen their knowledge and understanding of servo motors and their applications. It is advisable to consult multiple sources and cross-reference information to ensure a comprehensive understanding of the subject.

servo motor

What is the significance of closed-loop control in servo motor operation?

Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:

1. Accuracy and Precision:

Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.

2. Stability and Repeatability:

Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.

3. Compensation for Disturbances:

One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.

4. Improved Response Time:

Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.

5. Adaptability to Changing Conditions:

Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.

In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China Good quality CHINAMFG NEMA34 DMA860h 2phase Stepper Motor Closed Loop Servo Driver 7.2A 18V~70V   vacuum pump booster	China Good quality CHINAMFG NEMA34 DMA860h 2phase Stepper Motor Closed Loop Servo Driver 7.2A 18V~70V   vacuum pump booster
editor by CX 2024-04-11

China Good quality Azbil New or Ecm3000f0350 Flow Control Valve Servo Damper Actuator Motor for Burners Accessories vacuum pump oil

Product Description

AZBIL New OR ECM3000F 0571 Flow Control Valve Servo Damper Actuator Motor For Burners Accessories

Product Description

The ECM3000 is a control motor designed for various industrial equipment applications. Two models are available: 90° angular stroke motor for applications such as burner controls and 160° angular stroke motor for valve controls of hot and cold water or steam. Three kinds of control signal input types are available: relay contact, 4 to 20mAdc, and potentiometer. Three kinds of power supply voltage types are available: 24Vac, 100Vac and 200Vac. Additionally, a power supply unit applicable to a voltag erange of 85 to 264Vac is also available for the 4 to 20mAdc input type. The ECM3000 contains a standard bracket accessory for
retrofitting Yamatake’s older motors.

 

Features:
• Robust aluminum die-cast body.
• Long life parts are used for the internal potentiometers and bearings of the motor.
• Input is selectable – 3 input types. (According to model No.) Relay contact, 4 to 20mAdc and potentiometer.
• The 90° angular stroke motor type has a pointer to indicate the position of the rotating shaft and a rotating direction label.
• Four optional auxiliary switches are available with the 90° angular stroke motor type. Control Motor ECM3000
• For both 90° and 160° angular stroke motors, models with 2 auxiliary switches and open/close override function are alsoavailable.
• Splash-proof structure
IP54 or equivalent, superior to environment resistance.
• Motor mounting bracket (standard accessory part) is compatible to replacing from Yamatake’s older motor being used at present.
• Two angular strokes available for several applications. 90° type
and 160° type
• Output torque is 12.5N·m.
• A CE-marked and cUL-certified product (24Vac model only).

PRODUCT SPECIFICATIONS

item

value

Condition

New

Warranty

1.5 years

Applicable Industries

Machinery Repair Shops, Food & Beverage Factory, Farms, Home Use, Retail, Food Shop, Construction works , Food & Beverage Shops, Other, Advertising Company

Weight (KG)

2

Video outgoing-inspection

Provided

Machinery Test Report

Provided

Place of CHINAMFG

Japan

Brand Name

AZBIL

Type

Gas Burner

Product name

AZBIL ECM3000F 0571 Flow Control Valve Damper Actuator

Model

ECM3000F 0571

Brand

AZBIL

Color

Silver

Power supply

24vac

Turnaround Time

39s

Input Signal

Relay contact

Output torque

12.5Nm

Application/Usage

Gas Burners Industrial Accessories

After Warranty Service

Video technical support

   

AZBIL New OR ECM3000F 0571 Flow Control Valve Servo Damper Actuator Motor For Burners Accessories

Recommend Products

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Ng and LPG
Purpose: Control Gas
Parts: Damper Actuator
Application Fields: Industrial Gas Burner
Noise Level: Low
Machine Size: Medium
Samples:
US$ 985/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China Good quality Azbil New or Ecm3000f0350 Flow Control Valve Servo Damper Actuator Motor for Burners Accessories   vacuum pump oil	China Good quality Azbil New or Ecm3000f0350 Flow Control Valve Servo Damper Actuator Motor for Burners Accessories   vacuum pump oil
editor by CX 2024-04-04

China factory Kah-20cl3ne AC Servo Actuator Premium Quality Harmonic Drive Actuator Joint Actuator Motor for Robot vacuum pump electric

Product Description

Product Description

Hollow shaft rotary actuators

                                                                                           KAH series hollow shaft rotary actuators
Main features

1.KAH series hollow shaft rotary actuator provides large-torque and high-precision rotary actuation. With integrated design, processing and assembly technique, it is provided with high precision speed reducer, framework torque motor, hollow shaft high resolution absolute encoder, brake and intelligent sensor.
2.It provides high torque output and torque density, for example, the torque of KAH-40 rotary actuator can reach 800N·m.
3.The positioning precision of rotary actuator is within 30 Arc sec.
4.An internal through hole is set to facilitate threading wires, gas pipe and laser beams and simplify system structure.
5.Dozens of product models are provided to meet diversified needs, and the products with 220 VAC, 110 VAC and 48 VAC voltages are available.
6.The high protection grade (IP67) makes the product applicable to severe working environment.
8.It can be used by matching with KDE series EtherCAT bus servo drives to realize ultra-low vibration controland reliable and stable operation. It provides an integrated drive control solution.
 

Applications

The products have been widely used in such fields as electronic and semiconductor equipment, precision machine tool, factory automation systems, precision laser processing device, LED equipment, detection device, medical apparatus and instruments, robot and special mechanical arm, printing machinery, spray painting equipment, glass processing equipment, precision measuring instrument and other fields.

Model

 

Specifications

KAH-20  encoder Specification parameter
Series KAH-20
Model KAH-20 20A 20B 20C 20D 20E
Deceleration ratio 1:51 1:81 1:101 1:121 1:161
Maximum torque starting &stopping(N·M) 69 91 102 108 113
Instantaneous maximum torque(N·M) 42 58 61 61 61
AC voltage 220VAC Maximum speed RPM 119.6 75.3 60.4 50.4 37.9
Rated speed RPM 60.8 38.3 30.7 25.6 19.3
Maximum current Arms 4.53 3.89 3.41 2.78 2.21
Rated current Arms 2.12 1.85 1.56 1.3 0.98
Torque constant N·M/Arms 19.81 31.35 39.10 46.92 62.24
Motor phase resistance Ohms 2.135
Motor phase inductance mH 3.869
Motor Back EMF Vrms/kRPM 30.66
AC voltage 1100VAC Maximum speed RPM 100 63.0 50.5 42.1 31.7
Rated speed RPM 60.8 38.3 30.7 25.6 19.3
Maximum current Arms 9.49 7.87 7.08 6.25 4.91
Rated current Arms 4.28 3.72 3.14 2.62 1.97
Torque constant N·M/Arms 9.82 15.61 19.45 23.32 31.04
Motor phase resistance Ohms 1.036
Motor phase inductance mH 1.684
Motor Back EMF Vrms/kRPM 14.79
AC voltage 480VAC Maximum speed RPM 78.4 49.4 39.6 33.1 24.8
Rated speed RPM 60.8 38.3 30.7 25.6 19.3
Maximum current Arms 17.89 18.86 13.33 11.79 9.27
Rated current Arms 10.88 12.03 7.97 6.66 5.03
Torque constant N·M/Arms 3.86 4.82 7.65 9.16 12.19
Motor phase resistance Ohms 0.262
Motor phase inductance mH 0.313
Motor Back EMF Vrms/kRPM 7.98
Absolute Encoder Encoder Type Hollow absolute multiturn encoders ,Single-loop 19,22or24, multiturn16
Encoder resolution Motor(1time)rotation 219(524,288),222(4,194.304)or224(16777216)
Motor multiple rotation counter 215(65.536)
Incremental Encoder resolution Hollow incremental encoder,40000impulse/rpm(4 time signal)
encoder Output shaft resolution pulse/rev 2040000 3240000 4040000 4840000 6440000
uniderection positioning accuracy Arc Sec 60 40 40 40 40
Bidirectional positioning accuracy Arc Min 2 1.5 1 1 1
Overturning stiffness ×104 N·m /rad 22.5 27.3
Torsional stiffness ×104 N·m /rad 1.8 2.3
Moment of inertia without Brake Kg*m2 0.19 0.57 0.86 1.23 2.18
with Brake Kg*m2 0.22 0.63 0.95 1.35 2.35
Weight without Brake Kg 2.2
with Brake Kg 2.5
Motor Grade 16
Motor insulation Heat resistance grade :F(155ºC)
Insulation resistance:above200MΩ(DC500V)
Dielectric Strength:AC1500V/1min
Protection grade Fully closed self cooling type(IP65/IP67 degree)

Photos
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Samples:
US$ 3000/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

Are there common issues or challenges associated with servo motor systems, and how can they be addressed?

Servo motor systems are widely used in various applications, but they can encounter common issues or challenges that affect their performance and reliability. Let’s explore some of these issues and discuss potential solutions:

1. Positioning and Tracking Errors:

One common challenge in servo motor systems is positioning and tracking errors. These errors can occur due to factors such as mechanical backlash, encoder resolution limitations, or disturbances in the system. To address this issue, careful calibration and tuning of the servo control system are necessary. This includes adjusting feedback gains, implementing feedback filtering techniques, and utilizing advanced control algorithms to improve the system’s accuracy and minimize errors. Additionally, employing high-resolution encoders and backlash compensation mechanisms can help enhance the positioning and tracking performance.

2. Vibration and Resonance:

Vibration and resonance can impact the performance of servo motor systems, leading to reduced accuracy and stability. These issues can arise from mechanical resonances within the system or external disturbances. To mitigate vibration and resonance problems, it is crucial to analyze the system’s dynamics and identify critical resonant frequencies. Implementing vibration dampening techniques such as mechanical isolation, using vibration-absorbing materials, or employing active vibration control methods can help minimize the effect of vibrations and improve the system’s performance.

3. Overheating and Thermal Management:

Servo motors can generate heat during operation, and inadequate thermal management can lead to overheating and potential performance degradation. To address this issue, proper cooling and thermal management techniques should be employed. This may involve using heat sinks, fans, or liquid cooling systems to dissipate heat efficiently. Ensuring adequate ventilation and airflow around the motor and avoiding excessive current or overloading can also help prevent overheating. Monitoring the motor’s temperature and implementing temperature protection mechanisms can further safeguard the motor from thermal damage.

4. Electrical Noise and Interference:

Electrical noise and interference can affect the performance and reliability of servo motor systems. These issues can arise from electromagnetic interference (EMI) or radio frequency interference (RFI) from nearby equipment or electrical sources. To mitigate electrical noise, proper shielding and grounding techniques should be employed. Using shielded cables, ferrite cores, and grounding the motor and control system can help minimize the impact of noise and interference. Additionally, employing filtering techniques and surge protection devices can further improve system robustness against electrical disturbances.

5. System Integration and Compatibility:

Integrating a servo motor system into a larger control system or automation setup can present challenges in terms of compatibility and communication. Ensuring proper compatibility between the servo motor and the control system is crucial. This involves selecting appropriate communication protocols, such as EtherCAT or Modbus, and ensuring compatibility with the control signals and interfaces. Employing standardized communication interfaces and protocols can facilitate seamless integration and interoperability. Additionally, thorough testing and verification of the system’s compatibility before deployment can help identify and address any integration issues.

6. Maintenance and Service:

Maintenance and service requirements are important considerations for servo motor systems. Regular maintenance, including lubrication, inspection, and cleaning, can help prevent issues related to wear and tear. Following manufacturer-recommended maintenance schedules and procedures is essential to ensure the longevity and optimal performance of the motor. In case of any malfunctions or failures, having access to technical support from the manufacturer or trained service personnel can help diagnose and address problems effectively.

By being aware of these common issues and challenges associated with servo motor systems and implementing appropriate solutions, it is possible to enhance the performance, reliability, and lifespan of the servo motor system. Regular monitoring, proactive maintenance, and continuous improvement can contribute to optimizing the overall operation and efficiency of the system.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China factory Kah-20cl3ne AC Servo Actuator Premium Quality Harmonic Drive Actuator Joint Actuator Motor for Robot   vacuum pump electricChina factory Kah-20cl3ne AC Servo Actuator Premium Quality Harmonic Drive Actuator Joint Actuator Motor for Robot   vacuum pump electric
editor by CX 2024-03-11

China Good quality ZJY265A-15BH-B5A2Y1 15KW Power Spindle Servo Motor vacuum pump and compressor

Product Description

GSK ZJY265A-15BH-B3A2Y1
mechanical characteristics curve of the motor 

Motor overall and installation dimension

Overall dimension (refer to figures)
A B C D E F G H I J K L N P Q S T Z
265 132 185 265 110 532 392 230h7 14 48h6 256 135 230 40 315 110 5 15

Dimension of the Standard Key Slot

 

Product Features
·Adopt the totally enclosed air cooling structure without the shell,good shape and compact structure.
·Employ the optimized electromagnetic design with the characters of the low noise,smooth running and high efficiency.
·Introduce the imported bearing in high precision,and the rotor reaches the high precision with the dynamic balance process,
which can ensure the motor running stable and reliable with small vibration and low noise in the maximum rotational speed range.
·Adopt the enameled wire of corona resistance,the motor can be driven reliably at the ambient temperature of -15 degree to 40 degree,
and in the environment with the dust and oil.
·Employ the encoder at high speed and in high precision,and it can be incorporated into the drive with high performance for controlling the speed
 and the position in high precision.
·The overload capacity is strong and the motor is wide and the maximum speed can reach 12000rpm.
·Impact resistance,long lifetime and high cost performance.
·Protection level IP54(GB/T4942.1-2006)
·Insulation grade:Grade F(GB 755-2008)
·Vibration grade:Grade B(GB 10068-2008)

 

Product Description

GSK ZJY series spindle servo motor

Models Numbers

SR.NO Meaning 
(1) The spindle servo motor 
(2) Flange size ( 182, 208, 265, 320 ) 
(3) Design sequence number (None: Original A, B,C… : design sequence number) 
(4) Rated power (Unit:KW)
(5) Rated speed (V: 600 r/min, W: 750 r/min, A: 1000 r/min, B:1500 r/min, C: 2000 r/min, E: 3000 r/min )
(6) Max. speed (G: 15000 r/min,F: 12000 r/min, H:10000 r/min, M:7000 r/min, L:4500 r/min ) 
(7) D:Dual-Speed type 
(8) Structure installation type: (B5 flange installation, B3 footing installation, B35 flange & footing installation )
(9) Encoder type (None: Incremental 1571 p/r, A2: Incremental 5000 p/r, A5: Absolute 21 bit ) 
(10) Look the terminal box position in view from the shaft end (None: on the top, R: on the right, L: on the left).
(11) Shaft end (None: straight shaft , Y1: with the standard key slot) 
(12) Customer special order numbers are bracketed in two capitals.
(13) Power supply voltage (none: three-phase 380~440V, L: three-phase 220V)

 

Product Parameters

 

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-1)

              Model ZJY182A-3.7BL ZJY182A-5.5BL ZJY182A-1.5BH ZJY182A-2.2BH ZJY182A-3.7BH ZJY182A-5.5BH ZJY182A-3.7EG ZJY182A-5.5EG ZJY182A-7.5EG
Item
Rated power(kW) 3.7 5.5 1.5 2.2 3.7 5.5 3.7 5.5 7.5
Adaptive driver  GS/GR3050 GS/GR3050 GS/GR3048 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3050 GS/GR3075 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 10.4 13.8 7.3 7.5 15.5 17.3 11.6 16.6 20.2
Rated 53.7 53.5 53.9 53.6 53.1 53.5 103.2 103.3 103.2
frequency(Hz)
Rated torque(N·m) 24 35 9.5 14 24 35 11.8 17.5 24
30min power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 5.5 7.5 11
30min current(A) 14.8 18 9.3 11 19.6 21.8 15.4 20.7 26.6
30min torque(N·m) 35 48 14 24 35 48 17.5 24 35
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 3000 3000 3000
Constant power range(r/min) 1500~4500 1500~4500 1500~8000 1500~8000 1500~8000 1500~8000 3000~12000 3000~12000 3000-12000
Max. speed(r/min) 4500 4500 10000 10000 10000 10000 15000 15000 15000
Moment of inertia(kg·m2) 0.0068 0.5712 0.004 0.0054 0.0083 0.5712 0.0054 0.0068 0.0083
Weight(kg) 37 52 27 32 43 52 32 37 43
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 37W 0.1A
 Overall dimension
 (refer to figures)
A 182 182 182 182 182 182 182 182 182
B 91 91 91 91 91 91 91 91 91
C 123 123 123 123 123 123 123 123 123
D 185 185 185 185 185 185 185 185 185
E 60 60 60 60 60 60 60 60 60
F 371 436 319 346 401 436 346 371 401
G 249 314 197 224 279 314 224 249 279
H 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7
I 12 12 12 12 12 12 12 12 12
J 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6
K 158 158 158 158 158 158 158 158 158
L 93 93 93 93 93 93 93 93 93
N 156 156 156 156 156 156 156 156 156
P 32 32 32 32 32 32 32 32 32
Q 184 249 132 159 214 249 159 184 214
S 60 60 60 60 60 60 60 60 60
T 4 4 4 4 4 4 4 4 4
Z 12 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-2)

     Model ZJY208A-3.7WL ZJY208A-2.2AM ZJY208A-3.7AM ZJY208A-5.5AM ZJY208A-5.5BL ZJY208A-7.5BL ZJY208A-9BL ZJY208A-3.7BM
Item
Rated power(kW) 3.7 2.2 3.7 5.5 5.5 7.5 9 3.7
Adaptive driver  GS/GR3050 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3075 GS/GR3075 GS/GR3100 GS/GR3050
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 11.3 6.7 10.2 16.3 12.9 17.9 21.6 8.6
Rated 27.3 35.7 35.7 35.7 53.3 52.9 52.6 52.9
frequency(Hz)
Rated torque(N·m) 47 21 35 53 35 48 57.3 24
30min power(kW) 5.5 3.7 5.5 7.5 7.5 11 12 5.5
30min current(A) 16 10.6 14.2 20.5 16.8 24 27.2 12.7
30min torque(N·m) 70 35 53 72 48 70 76.4 35
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500
Constant power range(r/min) 750~3500 1000~4000 1000~4000 1000~4000 1500~4500 1500~4500 1500~4500 1500-5000
Max. speed(r/min) 4500 7000 7000 7000 4500 4500 4500 7000
Moment of inertia(kg·m2) 0.571 0.0142 0.0196 0.571 0.0143 0.0196 0.5716 0.0142
Weight(kg) 77 51 66 77 51.5 66 77.5 51
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A
 Overall dimension 
(refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 80 80 80 80 80 80 80
F 524 414 469 524 414 469 524 414
G 395 285 340 395 285 340 395 285
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 28h6 38h6 38h6 38h6 38h6 48h6 28h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 320 210 265 320 210 265 320 210
S 80 60 80 80 80 80 110 60
T 5 5 5 5 5 5 5 5
  Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-3)

     Model ZJY208A-5.5BM ZJY208A-7.5BM ZJY208A-2.2BH ZJY208A-3.7BH ZJY208A-5.5BH ZJY208A-7.5BH ZJY208A-11CM ZJY208A-11CH
Item
Rated power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 11 11
Adaptive driver  GS/GR3050 GS/GR3075 GS/GR3048 GS/GR3050 GS/GR3075 GS/GR3100 GS/GR3100 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 13 17 8.9 12.6 18.4 22.4 28.3 28.3
Rated 52.4 52.7 52.6 52.5 52.4 52.6 69.1 69
frequency(Hz)
Rated torque(N·m) 35 48 14 24 35 48 52.6 52.5
30min power(kW) 7.5 11 3.7 5.5 7.5 11 15 15
30min current(A) 16.9 24.6 13.8 18 24 32.2 37 37
30min torque(N·m) 48 70 24 35 48 70 71.6 71.6
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 2000 2000
Constant power range(r/min) 1500~5000 1500~5000 1500~5000 1500~5000 1500~8000 1500~8000 2000~7000 2000-8000
Max. speed(r/min) 7000 7000 10000 10000 10000 10000 7000 10000
Moment of inertia(kg·m2) 0.0196 0.571 0.0093 0.0142 0.0196 0.571 0.5716 0.571
Weight(kg) 66 77 49 51 66 77 77.5 77
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 80 60 60 80 80 110 80
F 469 524 364 414 469 524 524 524
G 340 395 235 285 340 395 395 395
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 38h6 28h6 28h6 38h6 38h6 48h6 38h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 265 320 160 210 265 320 320 320
S 80 80 53 60 80 80 110 80
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-4)

     Model ZJY208A-5.5CF ZJY208A-7.5CF ZJY208A-11EH ZJY208A-5.5EF ZJY208A-7.5EF ZJY208A-11EF ZJY265A-5.5WL ZJY265A-7.5WL
Item
Rated power(kW) 5.5 7.5 11 5.5 7.5 11 5.5 7.5
Adaptive driver  GS/GR3075 GS/GR3100 GS/GR3100 GS/GR3050 GS/GR3075 GS/GR3100 GS/GR3075 GS/GR3100
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 19 25.8 25.2 12.8 17.7 25.2 16.3 21.4
Rated 69 69 102.2 102.9 102.2 102.2 26.6 26.7
frequency(Hz)
Rated torque(N·m) 26.3 35.8 35 17.5 24 35 70 95.5
30min power(kW) 7.5 11 15 7.5 11 15 7.5 11
30min current(A) 24 34.9 31.6 16 23.3 31.7 20.8 30.1
30min torque(N·m) 35.8 52.5 48 24 35 48 95.5 140
Rated speed(r/min) 2000 2000 3000 3000 3000 3000 750 750
Constant power range(r/min) 2000~10000 2000~10000 3000~9000 3000~10000 3000~10000 3000~10000 750~3500 750-3500
Max. speed(r/min) 12000 12000 10000 12000 12000 12000 4500 4500
Moment of inertia(kg·m2) 0.0142 0.0196 0.0196 0.0093 0.0142 0.0196 0.0606 0. 0571
Weight(kg) 51 66 66 49 51 66 107 125
Installation type IM B5 or B35  IM B5 or B3
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 40W 0.14A Three-phase AC 380~440V 50/60Hz 70W 0.21A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 265 265
B 104 104 104 104 104 104 132 132
C 160 160 160 160 160 160 185 185
D 215 215 215 215 215 215 265 265
E 60 80 80 60 60 80 110 110
F 414 469 469 364 414 469 487 533
G 285 340 340 235 285 340 347 392
H 180h7 180h7 180h7 180h7 180h7 180h7 230h7 230h7
I 14 14 14 14 14 14 14 14
J 28h6 38h6 38h6 28h6 28h6 38h6 48h6 48h6
K 212 212 212 212 212 212 256 256
L 106 106 106 106 106 106 135 135
N 180 180 180 180 180 180 230 230
P 40 40 40 40 40 40 40 40
Q 210 265 265 160 210 265 270 315
S 60 80 80 60 60 80 110 110
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 15 15

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-5)

     Model ZJY265A-11WL ZJY265A-7.5AM ZJY265A-11AM ZJY265A-15AM ZJY265A-7.5BM ZJY265A-11BM ZJY265A-15BM ZJY265A-18.5BM ZJY265A-22BM
Item
Rated power(kW) 11 7.5 11 15 7.5 11 15 18.5 22
Adaptive driver  GS/GR3148 GS/GR3100 GS/GR3148 GS/GR3150 GS/GR3075 GS/GR3100 GS/GR3150 GS/GR3150 GS/GR3198
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 30 21.5 30.9 48.3 18 26 35 48.7 58
Rated 27.2 35.2 35.2 35.1 52.3 52.2 51.9 51.8 51.7
frequency(Hz)
Rated torque(N·m) 140 72 105 143 48 70 95 118 140
30min power(kW) 15 11 15 18.5 11 15 18.5 22 30
30min current(A) 41 29 40.2 56 26 34 42 54.7 73
30min torque(N·m) 191 105 143 177 70 95 118 140 191
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500 1500
Constant power range(r/min) 750~3500 1000~4000 1000~4000 1000~4000 1500~5000 1500~5000 1500~5000 1500~5000 1500-5000
Max. speed(r/min) 4500 7000 7000 7000 7000 7000 7000 7000 7000
Moment of inertia(kg·m2) 0. 0571 0. 0571 0.571 0.0869 0. 0571 0.571 0.571 0.571 0.1043
Weight(kg) 143 89 125 143 89 107 125 143 162
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 70W 0.21A
 Overall dimension
 (refer to figures)
A 265 265 265 265 265 265 265 265 265
B 132 132 132 132 132 132 132 132 132
C 185 185 185 185 185 185 185 185 185
D 265 265 265 265 265 265 265 265 265
E 110 110 110 110 110 110 110 110 110
F 577 442 532 577 442 487 532 577 632
G 437 302 392 437 302 347 392 437 492
H 230h7 230h7 230h7 230h7 230h7 230h7 230h7 230h7 230h7
I 14 14 14 14 14 14 14 14 14
J 55h6 48h6 48h6 48h6 48h6 48h6 48h6 55h6 55h6
K 256 256 256 256 256 256 256 256 256
L 135 135 135 135 135 135 135 135 135
N 230 230 230 230 230 230 230 230 230
P 40 40 40 40 40 40 40 40 40
Q 360 225 315 360 225 270 315 360 415
S 110 110 110 110 110 110 110 110 110
T 5 5 5 5 5 5 5 5 5
Z 15 15 15 15 15 15 15 15 15

The main technical parameters of three-phase 380V/440V spindle motor and its overall dimension(List 1-6)

     Model ZJY265A-7.5BH ZJY265A-11BH ZJY265A-15BH ZJY320A-18.5WL ZJY320A-22WL ZJY320A-30BL ZJY320A-37BL ZJY320A-45BL
Item
Rated power(kW) 7.5 11 15 18.5 22 30 37 45
Adaptive driver  GS/GR3100 GS/GR3148 GS/GR3150 GS/GR3198 GS/GR3198 GS/GR3300 GS/GR3300 GS/GR3300
Drive power supply(V) Three-phase AC 380/440V  50/60Hz
Rated current(A) 21 30 40.7 51 58 69 87 100
Rated 51.7 51.7 51.7 26.1 26 51.2 51.1 51.1
frequency(Hz)
Rated torque(N·m) 48 70 95 235 280 191 235 286
30min power(kW) 11 15 18.5 22 30 37 45 55
30min current(A) 28.5 38.3 42.7 59 73 83 102 115
30min torque(N·m) 70 95 118 280 381 235 286 352
Rated speed(r/min) 1500 1500 1500 750 750 1500 1500 1500
Constant power range(r/min) 1500~8000 1500~8000 1500~8000 750~3500 750~3500 1500~4500 1500~4500 1500~4500
Max. speed(r/min) 10000 10000 10000 4500 4500 4500 4500 4500
Moment of inertia(kg·m2) 0. 0571 0.571 0.571 0.2997 0.345 0.24 0.2997 0.348
Weight(kg) 89 107 125 249 285 208 249 293
Installation type IM B5 or B3  IM B35
Cooling fan power supply Three-phase AC 380~440V 50/60Hz 70W 0.21A Three-phase AC 380~440V 50/60Hz 60W 0.22A
 Overall dimension
 (refer to figures)
A 265 265 265 320 320 320 320 320
B 132 132 132 \ \ \ \ \
C 185 185 185 193 193 193 193 193
D 265 265 265 350 350 350 350 350
E 110 110 110 140 140 140 140 140
F 442 487 532 715 765 645 715 785
G 302 347 392 450 500 380 450 520
H 230h7 230h7 230h7 300h7 300h7 300h7 300h7 300h7
I 14 14 14 19 19 19 19 19
J 48h6 48h6 48h6 60h6 60h6 60h6 60h6 60h6
K 256 256 256 \ \ \ \ \
L 135 135 135 165 165 165 165 165
N 230 230 230 279 279 279 279 279
P 40 40 40 50 50 50 50 50
Q 225 270 315 529 579 459 529 599
S 110 110 110 \ \ \ \ \
T 5 5 5 5 5 5 5 5
Z 15 15 15 19 19 19 19 19

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-1)

     Model ZJY182A-3.7BL ZJY182A-5.5BL ZJY182A-1.5BH ZJY182A-2.2BH ZJY182A-3.7BH ZJY182A-5.5BH ZJY182A-3.7EG ZJY182A-5.5EG ZJY182A-7.5EG
Item
Rated power(kW) 3.7 5.5 1.5 2.2 3.7 5.5 3.7 5.5 7.5
Adaptive driver  GS/GR2075 GS/GR2100 GS/GR2050 GS/GR2050 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2148
Drive power supply(V) Three-phase AC 220V  50/60Hz
Rated current(A) 17.9 23.9 10.7 12.9 23.5 30 20 28.8 35
Rated 53.7 53.5 53.9 53.6 53.1 53.5 103.2 103.3 103.2
frequency(Hz)
Rated torque(N·m) 24 35 9.5 14 24 35 11.8 17.5 24
30min power(kW) 5.5 7.5 2.2 3.7 5.5 7.5 5.5 7.5 11
30min current(A) 25.2 31.1 17.6 20 36.4 40.7 26.7 35.8 47.3
30min torque(N·m) 35 48 14 24 35 48 17.5 24 35
Rated speed(r/min) 1500 1500 1500 1500 1500 1500 3000 3000 3000
Constant power range(r/min) 1500-4500 1500-4500 1500~8000 1500~8000 1500~8000 1500~8000 3000~12000 3000~12000 3000~12000
Max. speed(r/min) 4500 4500 10000 10000 10000 10000 15000 15000 15000
Moment of inertia(kg·m2) 0.0068 0.5712 0.004 0.0054 0.0083 0.5712 0.0054 0.0068 0.0083
Weight(kg) 37 52 27 32 43 52 32 37 43
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 220V 50/60Hz 37W 0.1A
 Overall dimension
 (refer to figures)
A 182 182 182 182 182 182 182 182 182
B 91 91 91 91 91 91 91 91 91
C 123 123 123 123 123 123 123 123 123
D 185 185 185 185 185 185 185 185 185
E 60 60 60 60 60 60 60 60 60
F 371 436 319 346 401 436 346 371 401
G 249 314 197 224 279 314 224 249 279
H 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7 150h7
I 12 12 12 12 12 12 12 12 12
J 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6 28h6
K 184 184 158 158 158 158 158 158 158
L 93 93 93 93 93 93 93 93 93
N 156 156 156 156 156 156 156 156 156
P 32 32 32 32 32 32 32 32 32
Q 184 249 132 159 214 249 159 184 214
S 60 60 60 60 60 60 60 60 60
T 4 4 4 4 4 4 4 4 4
Z 12 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-2)

     Model ZJY208A-3.7WL ZJY208A-2.2AM ZJY208A-3.7AM ZJY208A-5.5AM ZJY208A-5.5BL ZJY208A-7.5BL ZJY208A-9BL ZJY208A-3.7BM
Item
Rated power(kW) 3.7 2.2 3.7 5.5 5.5 7.5 9 3.7
Adaptive driver  GS/GR2075 GS/GR2050 GS/GR2075 GS/GR2100 GS/GR2100 GS/GR2100 GS/GR2148 GS/GR2075
Drive power supply(V) Three-phase AC 220V  50/60Hz
Rated current(A) 19.6 11.6 17.7 28.2 22.4 31 37.5 14.9
Rated 27.3 35.7 35.7 35.7 53.3 52.9 52.6 52.9
frequency(Hz)
Rated torque(N·m) 47 21 35 53 35 48 57.3 24
30min power(kW) 5.5 3.7 5.5 7.5 7.5 11 12 5.5
30min current(A) 27.3 18.4 24.6 35.5 28 41.3 46.2 22
30min torque(N·m) 70 35 53 72 48 70 76.4 35
Rated speed(r/min) 750 1000 1000 1000 1500 1500 1500 1500
Constant power range(r/min) 750-3500 1000-4000 1000~4000 1000~4000 1500~4500 1500~4500 1500~4500 1500~5000
Max. speed(r/min) 4500 7000 7000 7000 4500 4500 4500 7000
Moment of inertia(kg·m2) 0.571 0.0142 0.0196 0.571 0.0143 0.0196 0.571 0.0142
Weight(kg) 77 51 66 77 51.5 66 77.5 51
Installation type IM B5 or B35 
Cooling fan power supply Three-phase AC 220V 50/60Hz 40W 0.14A
 Overall dimension
 (refer to figures)
A 208 208 208 208 208 208 208 208
B 104 104 104 104 104 104 104 104
C 160 160 160 160 160 160 160 160
D 215 215 215 215 215 215 215 215
E 80 60 80 80 80 80 110 60
F 524 414 469 524 414 469 524 414
G 395 285 340 395 285 340 395 285
H 180h7 180h7 180h7 180h7 180h7 180h7 180h7 180h7
I 14 14 14 14 14 14 14 14
J 38h6 28h6 38h6 38h6 38h6 38h6 48h6 28h6
K 212 212 212 212 212 212 212 212
L 106 106 106 106 106 106 106 106
N 180 180 180 180 180 180 180 180
P 40 40 40 40 40 40 40 40
Q 320 210 265 320 210 265 320 210
S 80 80 80 80 80 80 110 60
T 5 5 5 5 5 5 5 5
Z 12 12 12 12 12 12 12 12

The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-3)
The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-4)
The main technical parameters of three-phase 220V spindle motor and its overall dimension(List 2-5)
The main technical parameters of dual speed  motor and its overall dimension(List 3)

Company Profile

 

GSK CNC Equipment Co., Ltd.

GSK CNC Equipment Co., Ltd. (hereinafter referred as GSK) is specially devoted to conducting research and practice of basic equipment industrial development, providing “trinity” packaged solutions of machine tool CNC system, servo drive and servo motor, taking initiative in the expansion of industrial robot and all-electric injection molding machine field, developing the new marketing mode of machine tool exhibition hall, providing the customers with all-round professional machine tool remanufacturing solutions and services, promoting the integration of production and education, setting up the vocational education and training institute, as well as conducting highly skilled CNC personnel training. It has developed into a high-tech enterprise integrating science, education, industry and trade, thus being known as “China Southern CNC Industrial Base”. 
Adhering to the corporate philosophy of “making itself a century-old enterprise and building gold quality” and the service spirit of “keeping improvement and making users satisfied”, GSK enhances the user product value & benefits through continuous technological progress and innovation, and makes unremitting efforts to promote the localization process of basic equipment industry, improve the technological level of the industry, and promote the development of China’s national equipment manufacturing industry. 

Main products:

                            GSK CNC System                                                                          Idustrial robot  

Full electric injection molding machine                                              CNC machine

       

     I nternational exhibition

 Exhibition hall
218MC USB Reading Problem Solution
2 18MC USB Reading Problem Solution

FAQ

Payments

1) We can accept EXW, FOB
2) Payment must be made before shipment.
3) Import duties, taxes and charges are not included in the item price or shipping charges. These charges are the buyer’s responsibility.

Shipping
1) We only ship to your confirmed address. Please make sure your shipping address is correct before purchase.
2) Most orders will be shipped out within 3-7 working days CHINAMFG payment confirmation.
3) Shipping normally takes 7-25 working days. Most of the items will delivery in 2 weeks, while there will be a delay for something we cannot control (such as the bad weather). If it happens, just contact us, we will help you check and resolve any problem.
3) Please check the package CHINAMFG receipt, if there are some damages, please contact us immediately.
Feedback & Refund
1) Feedback is important to us, if you have any problem with our products, please contact us, our technician will give you useful advises.
2) When you have the parcel and not satisfied with the goods or it is other problem, please tell us immediately, and provide us a photo showing the detail.
3) Any reason requiring for all refund. Items must be in original condition and no physical damage. Buyer responsible for all shipping cost.

If you need more information, please contact with us. We will attach great importance to your any problems.
Hope we could establish a long-term effective cooperation.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Variable Speed
Number of Stator: Three-Phase
Function: Driving, Control
Casing Protection: Protection Type
Starting Mode: Auto-induction Voltage-reduced Starting
Customization:
Available

|

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

How does feedback control work in a servo motor system?

In a servo motor system, feedback control plays a crucial role in achieving precise control over the motor’s position, speed, and acceleration. The feedback control loop consists of several components that work together to continuously monitor and adjust the motor’s behavior based on the desired and actual position information. Here’s an overview of how feedback control works in a servo motor system:

1. Position Reference:

The servo motor system starts with a position reference or a desired position. This can be specified by a user or a control system, depending on the application requirements. The position reference represents the target position that the servo motor needs to reach and maintain.

2. Feedback Sensor:

A feedback sensor, such as an encoder or resolver, is attached to the servo motor’s shaft. The purpose of the feedback sensor is to continuously measure the motor’s actual position and provide feedback to the control system. The sensor generates signals that indicate the motor’s current position, allowing the control system to compare it with the desired position.

3. Control System:

The control system receives the position reference and the feedback signals from the sensor. It processes this information to determine the motor’s current position error, which is the difference between the desired position and the actual position. The control system calculates the required adjustments to minimize this position error and bring the motor closer to the desired position.

4. Controller:

The controller is a key component of the feedback control loop. It receives the position error from the control system and generates control signals that govern the motor’s behavior. The controller adjusts the motor’s inputs, such as voltage or current, based on the position error and control algorithm. The control algorithm can be implemented using various techniques, such as proportional-integral-derivative (PID) control, which adjusts the motor’s inputs based on the current error, the integral of past errors, and the rate of change of errors.

5. Motor Drive:

The control signals generated by the controller are sent to the motor drive unit, which amplifies and converts these signals into appropriate voltage or current levels. The motor drive unit provides the necessary power and control signals to the servo motor to initiate the desired motion. The drive unit adjusts the motor’s inputs based on the control signals to achieve the desired position, speed, and acceleration specified by the control system.

6. Motor Response:

As the motor receives the adjusted inputs from the motor drive, it starts to rotate and move towards the desired position. The motor’s response is continually monitored by the feedback sensor, which measures the actual position in real-time.

7. Feedback Comparison:

The feedback sensor compares the actual position with the desired position. If there is any deviation, the sensor generates feedback signals reflecting the discrepancy between the desired and actual positions. These signals are fed back to the control system, allowing it to recalculate the position error and generate updated control signals to further adjust the motor’s behavior.

This feedback loop continues to operate in a continuous cycle, with the control system adjusting the motor’s inputs based on the feedback information. As a result, the servo motor can accurately track and maintain the desired position, compensating for any disturbances or variations that may occur during operation.

In summary, feedback control in a servo motor system involves continuously comparing the desired position with the actual position using a feedback sensor. The control system processes this position error and generates control signals, which are converted and amplified by the motor drive unit to drive the motor. The motor’s response is monitored by the feedback sensor, and any discrepancies are fed back to the control system, enabling it to make further adjustments. This closed-loop control mechanism ensures precise positioning and accurate control of the servo motor.

China Good quality ZJY265A-15BH-B5A2Y1 15KW Power Spindle Servo Motor   vacuum pump and compressor	China Good quality ZJY265A-15BH-B5A2Y1 15KW Power Spindle Servo Motor   vacuum pump and compressor
editor by CX 2024-03-05