Tag Archives: box motor

China Professional Gear Box Transfer Case Servo Actuator Motor Repair vacuum pump belt

Product Description

Why choose us?

” QUALITY IS OUR CULTURE “
“WITH US YOUR MONEY IN SAFE YOUR BUSINESS IN SAFE” 

1.Competitive Advantage Products
2.Full REFUND in case of Bad quality OR Late Delivery
3.Payment By Paypal, Western Union, TT etc we all can accept.
4.Confidentiality Agreement ” Business Secret CONTRACT ”
5.Quality Assurance CONTRACT
6.Small Order Welcomed

 

MECHANICAL DATA

Packaging & Shipping  
 1.Export Standard packing which can withstand rough handling.
 2.Samples’ delivery time:3-5 working days after we received the deposit.
  3.Bulk quantity delivery time: according to the specific quantity.
4. Delivery term: FOB & CIF & CFR & EXW
5. Shipment: your appointed forwarder is acceptable or we send to your Chinese agent

Our Services  
Customization and OEM are welcome.
Trade assurance orders are favored.  
Other service which you need.

Customized controllers

About Us:
 

HangZhou CHINAMFG Mechanical Electronic Co.,Ltd, establish in 2011, located in  Yangtze River CHINAMFG economic
zone, HangZhou City.
We are the factory which gathers production and sales of all kind gas springs and liner actuators. Our mainly
products are all kinds of DC linear actuators, AC linear actuators, servo linear actuators, lift gas springs, lockable
gas springs etc.
 Our gas springs and liner actuators are mainly used for all kinds of recliner, massage chair, beds, windows, solar
equipments, cars, buses, furnitures, boats , medical equipment, beauty chairs, aviation, many machines , agriculture
machine equipment and so on.        
CHINAMFG has strict quality control system, and full sets of advanced equipment. We have flexible mode of operation,
stable quality, complete catalog, excellent quality. CHINAMFG enjoys a good reputation in domestic and foreign market.
Our product exports to Europe, America, Southeast Asia, the Middle East, Russia, Africa and other countries.
CHINAMFG now is growing and expanding, we have customers throughout the world.
  We sincerely hope: Hand in hand, we together create a better future!

The parameters we can customized for you only if you can provide the detail info to us.
If you are interested and want to get more info, please contact me freely.

 
 
hax-gasspring

 
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: FCC, CCC, RoHS, ISO, CE
IP Rating: IP65
Limit Switch: Built-in
Samples:
US$ 490/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

servo motor

Where can individuals find reliable resources for learning more about servo motors and their applications?

Individuals interested in learning more about servo motors and their applications can access a variety of reliable resources. These resources provide valuable information, technical knowledge, and practical insights. Here are some places where individuals can find reliable resources for expanding their understanding of servo motors:

1. Manufacturer Websites:

Leading servo motor manufacturers often provide detailed documentation, technical specifications, application notes, and white papers on their websites. These resources offer in-depth information about their products, technologies, and best practices for servo motor applications. Users can visit the websites of prominent manufacturers to access reliable and up-to-date information.

2. Industry Associations and Organizations:

Industry associations and organizations related to automation, robotics, or specific industries often offer educational materials and resources on servo motors. They may provide technical publications, webinars, seminars, and training programs focused on servo motor technology and applications. Examples of such organizations include the International Society of Automation (ISA), the Robotics Industries Association (RIA), and the Society of Automotive Engineers (SAE).

3. Books and Technical Publications:

Books dedicated to servo motor technology, control systems, and industrial automation can provide comprehensive knowledge on the subject. Some recommended titles include “Servo Motors and Industrial Control Theory” by Riazollah Firoozian, “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and Bill Drury, and “Servo Motors and Motion Control: An Introduction” by Albert F. Seabury. Technical publications and journals such as IEEE Transactions on Industrial Electronics and Control Engineering Practice also offer valuable insights and research findings.

4. Online Courses and Training Platforms:

Various online learning platforms offer courses and training programs focused on servo motors and their applications. Websites like Udemy, Coursera, and LinkedIn Learning provide access to video-based courses taught by industry experts. These courses cover topics such as servo motor fundamentals, motion control, programming, and troubleshooting. By enrolling in these courses, individuals can acquire structured knowledge and practical skills related to servo motors.

5. Technical Forums and Discussion Groups:

Participating in technical forums and discussion groups can be an effective way to learn from industry professionals and enthusiasts. Websites like Stack Exchange, Reddit, and engineering-focused forums host discussions on servo motors, where individuals can ask questions, share experiences, and gain insights from the community. It’s important to verify the credibility of the information shared in such forums and rely on responses from trusted contributors.

6. Trade Shows and Conferences:

Attending trade shows, exhibitions, and conferences related to automation, robotics, or specific industries can provide opportunities to learn about servo motors. These events often feature presentations, workshops, and demonstrations by industry experts and manufacturers. Participants can gain hands-on experience, interact with professionals, and stay updated with the latest advancements in servo motor technology.

By leveraging these reliable resources, individuals can deepen their knowledge and understanding of servo motors and their applications. It is advisable to consult multiple sources and cross-reference information to ensure a comprehensive understanding of the subject.

servo motor

What factors should be considered when selecting a servo motor for a specific application?

When selecting a servo motor for a specific application, several factors need to be considered. These factors help ensure that the chosen servo motor meets the requirements and performs optimally in the intended application. Here are some key factors to consider:

1. Torque and Power Requirements:

One of the primary considerations is the torque and power requirements of the application. The servo motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. Additionally, the power rating of the motor should match the power supply available in the application. It is essential to evaluate the torque-speed characteristics of the servo motor to ensure it can deliver the required performance.

2. Speed and Acceleration:

The required speed and acceleration capabilities of the servo motor should align with the application’s needs. Different applications have varying speed and acceleration requirements, and the servo motor should be able to meet these demands. It is crucial to consider both the maximum speed that the motor can achieve and the time it takes to accelerate or decelerate to specific speeds. Evaluating the servo motor’s speed-torque characteristics and acceleration capabilities is necessary for selecting the right motor.

3. Positioning Accuracy and Repeatability:

The desired positioning accuracy and repeatability of the application play a significant role in servo motor selection. If precise positioning is crucial, a servo motor with high accuracy and low positioning errors should be chosen. The feedback mechanism, such as encoders or resolvers, should provide the required resolution to achieve the desired accuracy. Repeatability, the ability to consistently reach the same position, should also be considered, especially in applications where repetitive movements are necessary.

4. Environmental Conditions:

The environmental conditions in which the servo motor will operate should be taken into account. Factors such as temperature extremes, humidity, dust, and vibration can affect the motor’s performance and lifespan. In harsh environments, it may be necessary to choose a servo motor with appropriate protection ratings, such as IP (Ingress Protection) ratings, to ensure reliable operation and longevity.

5. Control System Compatibility:

The compatibility of the servo motor with the control system used in the application is crucial. The motor should be compatible with the control signals and communication protocols employed in the system. This includes considerations such as voltage compatibility, control signal types (analog, digital, pulse), and communication interfaces (such as Ethernet, CAN, or Modbus). Ensuring compatibility will facilitate seamless integration and efficient control of the servo motor within the application.

6. Size and Weight Constraints:

The physical size and weight limitations of the application should be considered when selecting a servo motor. The motor’s dimensions should fit within the available space, and its weight should not exceed the application’s weight capacity. Compact and lightweight servo motors may be preferred in applications where space is limited or weight is a critical factor.

7. Cost Considerations:

The cost of the servo motor and its overall value for the application should be evaluated. It is essential to consider the initial purchase cost as well as the long-term maintenance and operational costs. While cost is a factor, it should not be the sole determining factor, as compromising on quality or performance may lead to suboptimal results.

By considering these factors, one can make an informed decision when selecting a servo motor for a specific application. It is recommended to consult with manufacturers or experts in the field to ensure the chosen servo motor meets the application’s requirements and provides reliable and efficient performance.

servo motor

What are the key advantages of using servo motors in industrial applications?

Servo motors offer several key advantages that make them highly beneficial for a wide range of industrial applications. Here are some of the main advantages of using servo motors:

1. Precise Positioning:

Servo motors excel at precise positioning control. They can accurately move to specific angles or positions with high repeatability. This level of precision is crucial in applications where accurate and consistent positioning is required, such as robotics, CNC machining, and assembly lines.

2. High Torque at Various Speeds:

Servo motors are designed to deliver high torque output across a range of speeds. They can generate significant torque even at low speeds, enabling efficient operation in applications that require both high torque and precise control, such as lifting heavy loads or performing intricate movements.

3. Fast Response Times:

Servo motors have fast response times, meaning they can quickly accelerate, decelerate, and change direction in response to control signals. This responsiveness is essential in applications where rapid and dynamic motion control is needed, such as industrial automation, robotics, and production line equipment.

4. Closed-Loop Control:

Servo motors operate in a closed-loop control system, where feedback from position sensors is continuously used to adjust the motor’s behavior. This feedback control mechanism enables accurate tracking of the desired position and compensates for any disturbances or variations that may occur during operation. It enhances the motor’s accuracy, stability, and performance.

5. Wide Range of Sizes and Power Ratings:

Servo motors are available in a wide range of sizes and power ratings, making them suitable for diverse industrial applications. Whether it’s a small motor for precision tasks or a large motor for heavy-duty operations, there are servo motor options to meet various requirements.

6. Energy Efficiency:

Servo motors are designed to be energy-efficient. They typically have high power density, which means they can deliver a significant amount of torque per unit of size and weight. This efficiency helps reduce power consumption, lowers operating costs, and contributes to a greener and more sustainable industrial environment.

7. Flexibility and Adaptability:

Due to their versatility, servo motors can be easily integrated into different systems and applications. They can be combined with various control systems, sensors, and communication protocols to provide seamless integration and compatibility with existing industrial setups. This flexibility allows for customized and scalable solutions tailored to specific industrial requirements.

8. Durability and Reliability:

Servo motors are known for their durability and reliability, even in demanding industrial environments. They are built to withstand harsh conditions such as high temperatures, vibrations, and dust. This robust construction ensures long-term operation and minimizes downtime, contributing to increased productivity and reduced maintenance costs.

In summary, the key advantages of using servo motors in industrial applications include precise positioning, high torque at various speeds, fast response times, closed-loop control for accuracy and stability, a wide range of sizes and power ratings, energy efficiency, flexibility, and durability. These advantages make servo motors highly valuable for industries that require precise motion control, such as robotics, manufacturing, automation, CNC machining, and many others.

China Professional Gear Box Transfer Case Servo Actuator Motor Repair   vacuum pump belt	China Professional Gear Box Transfer Case Servo Actuator Motor Repair   vacuum pump belt
editor by CX 2024-05-07

China OEM New in Box Omron Servo Motor R88m-1m40030h-S2 PLC R88m-1m40030h-S2 vacuum pump booster

Product Description

HangZhou CHINAMFG Electronics Co., Ltd. is a B2B and B2C online shopping mall specializing in the industrial control electrical and electronic components industry.
In order to facilitate buyers to be able to purchase globally
We are not only an industrial control electrical and electronic retailer, but also a wholesale company. We do not have a complete list of our online stores.
If you need to purchase in bulk, please contact us for a better quote.
We hope to win your trust through reliable and competitive services.
Our aim is customer satisfaction is our biggest aim !!!!

 

6ES7953-8LG11-0AA0 6ES7193-4CA50-0AA0 D4SL-NSK10-LKH E2E-X4MD1 2M
6ES7953-8LG20-0AA0 6ES7193-4CK30-0AA0 D4V-8104SZ-N E2E-X14MD1 2M
6ES7953-8LG30-0AA0 6ES7193-4JA00-0AA0 D4V-8104Z-N E2E-C04S12-WC-B1 2M
6ES7953-8LG31-0AA0 6ES7193-4JA00-0AA0 D4V-8107Z-N BY OMR E2E-C04S12-WC-C1 2M
6ES7953-8LF11-0AA0 6ES7193-4DL00-0AA0 D4V-8108SZ E2E-C04S12-WC-B1-2 2M
6ES7953-8LF20-0AA0 6ES7193-4DL10-0AA0 D4V-8108SZ-N E2E-S05S12-WC-C1 2M
6ES7953-8LF30-0AA0 6ES7193-4DE10-0AA0 D4V-8108SZ-N E2E-S05S12-WC-B1 2M
6ES7953-8LF31-0AA0 6ES7193-4CE00-0AA0 D4V-8108SZ-N BY OMR E2E-S05S12-WC-C1-2 2M
6ES7953-8LL20-0AA0 6ES7193-4CE10-0AA0 D4V-8108Z-N E2E-C03SR8-WC-C1 2M
6ES7953-8LL31-0AA0 6ES7195-7HD80-0XA0 D4V-8108Z-N BY OMR E2B-M12KS04-WP-B1
  6ES7195-7HB00-0XA0 D4V-8111Z BY OMR E2B-M12KS04-WP-B2
6ES7131-4BF00-0AA0   D4V-8112Z E2B-M12KS04-WP-C1
6ES7134-4MB02-0AB0 6ES7131-4BF00   E2B-M12KS04-WP-C2
6ES7134-4GD00-0AB0 6ES7132-4BF00 E2B-M12LS04-M1-B1 OMS E2B-S08KS02-MC-B1 OMS
6ES7135-4GB01-0AB0 6ES7134-4GB01 E2B-M12LS04-M1-B2 OMS E2B-S08KS02-MC-B2 OMS
6ES7135-4LB02-0AB0 6ES7134-4GB11 E2B-M12LS04-M1-C1 OMS E2B-S08KS02-MC-C1 OMS
6ES7138-4DF01-0AB0 6ES7134-4GD00 E2B-M12LS04-M1-C1 OMS E2B-S08KS02-MC-C2 OMS
6ES7138-4DF11-0AB0 6ES7135-4GB01 E2B-S08KN04-WP-B1 2M OMS E2B-S08KN04-MC-B1 OMS
6ES7138-4CA01-0AB0 6ES7135-4LB02 E2B-S08KN04-WP-B2 2M OMS E2B-S08KN04-MC-B2 OMS
6ES7138-4DA04-0AB0 6ES7138-4DA04 E2B-S08KN04-WP-C1 2M OMS E2B-M12LN05-M1-C1 OMS
6ES7138-4CF03-0AB0 6ES7138-4CA01 E2B-S08KN04-WP-C2 2M OMS E2B-M12LN05-M1-C2 OMS
6ES7151-3AA23-0AB0 6ES7151-3AA23 E2B-M12KN05-M1-B1 OMS E2B-M12KS02-M1-B1 OMS
6ES7972-0BA52-0XA0 6ES7151-1AA06 E2B-M12KN05-M1-B2 OMS E2B-M12KS02-M1-B2 OMS
6ES7972-0BA12-0XA0 6ES7138-4DF11 E2B-M12KN05-M1-C1 OMS E2B-M12KS02-M1-C1 OMS
6ES7193-4GD20-0AA0 6ES7151-1BA02 E2B-M12KN05-M1-C2 OMS E2B-M12KS02-M1-C2 OMS
6ES7134-4MB02-0AB0   E2B-S08KN02-MC-B1 OMS E2B-S08KN02-WP-B1 2M OMS
  6ES7151-3BA23-0AB0 E2B-S08KN02-MC-B2 OMS E2B-S08KN02-WP-C1 2M OMS
6SL3120-1TE23-0AC0 6SL3120-2TE13-0AD0 E2B-S08KN02-MC-C1 OMS E2B-S08LN04-MC-B1 OMS
    E2B-S08KN02-MC-C2 OMS E2B-S08LN04-MC-B2 OMS
GP2501-TC11 3G3JZ-A4015 D2F-F-D CJ1W-ID261
GP2501-TC41-24V 3G3JZ-A4571 D2F-L CJ1W-ID262
GP2400-TC41-24V 3G3JZ-A4037 D2FW-G271M(D) CJ1W-MD231
GP2401-TC41-24V 3G3JZ-AB004 D2FW-G273M CJ1W-MD233
GP2300-LG41-24V 3G3JZ-AB007 D2HW-A201D CJ1W-MD261
GP2301-LG41-24V 3G3JZ-AB007 D2MQ-1 CJ1W-MD263
GP2300-SC41-24V 3G3JZ-AB015 D2MV-01L22-1C3 CJ1W-MD563
GP2301-SC41-24V 3G3JZ-AB015 D2VW-5-1M(D)(CHN) CJ1W-OA201
GP2300-TC41-24V 3G3MX2-A4007-ZV1 D2VW-5L2-1M(CHN) CJ1W-OC201
GP2301-TC41-24V 3G3MX2-A4110-ZV1 D2VW-5L2-1M(D) CJ1W-OC211
  3G3MX2-A4150-ZV1 D2X-C CJ1W-OD201
GP4301TAD 3G3MZ-AB015 D3M-01L2 CJ1W-OD211
GP4301TADW 3M6006 D3V-16-3C25 BY OMI CJ1W-OD212
GP4201TAD 3TB4322-0XB0 D40A-1C015-F CJ1W-OD231
GP4201TADW 3Z4S-CA STC-S133P-CS D40A-1C5 BY OMS CJ1W-OD232
GP4401TAD 3Z4S-LE SV-1214V D4A-3101N CJ1W-OD233
GP4401TADW   D4A-4501N CJ1W-OD261
GM4301TAD 6571-1030 VS64-CBL-03M D4A-4501N CJ1W-OD262
GM4201TAD 61F-G 110/220VAC C D4A-A00 CJ1W-OD263
GP4501TAD 61F-G1N AC110/220 D4A-C00 CJ1W-IC101
GP4501TAA 61F-G3N AC110/220 D4A-C00 CJ1W-II101
GP4501TADW 61F-GP-N AC100 D4B-2A15N CJ1W-TER01
GP4601TAA 61F-GP-N AC220 D4C-1202 CJ1W-B7A22
GP4601TAD 61F-GP-N AC220 D4C-1202 CJ1W-INT01
GP4501TMA 61F-IN AC110/220 D4C-1224 CJ1W-IDP01
GP4601TMA 6ES7-216-2BD23-0XB0 D4C-1302 CJ1W-CLK23
GP4501TMD 8PFA D4C-1402 CJ1W-CRM21
GP4601TMD A165-JRM-1 D4C-1602 CJ1W-DRM21
  A-20GV2-B D4C-3202 CJ1W-EIP21
NS5-SQ00B-V2 A22-01 D4C-4332 CJ1W-ETN21
NS5-TQ11B-V2 A22E-M-12 D4C-6224 CJ1W-ETN11
NS5-SQ11B-V2 A22Z-EG1 D4CC-3060 CJ1W-CLK21-V1
NS5-SQ10B-V2 AP-Z D4CC-4571 CJ1W-SCU21-V1
NS5-SQ10B-ECV2 B7AS-T6B6 D4CC-4060 CJ1W-SCU31-V1
NS8-TV00B-V2 B7A-T6A1 D4DS-K1 CJ1W-SRM21
NS8-TV00B-ECV2 BNL6 D4DS-K2 CJ1W-SCU41-V1
NS8-TV01B-V2 BS-1 D4DS-K2 CJ2M-MD211
NS10-TV00B-V2 BS-1 D4DS-K2 CJ2M-CPU11
NS10-TV00B-ECV2 BS-1 D4DS-K2 CJ2M-CPU12
NS10-TV01B-V2   D4DS-K3 CJ2M-CPU13
NS12-TS01B-V2 C500-CE403 D4DS-K3 CJ2M-CPU14
NS12-TS01-V2 C500-CE404 D4DS-K3 CJ2M-CPU15
NS12-TS00B-V2 C500-CE404 D4DS-K5 CJ2M-CPU31
NS12-TS00-V2 C500-CE404 D4DS-K5 CJ2M-CPU32
  CDHD-N D4E-1A10N OKUMA CJ2M-CPU33
6ES7331-7HF01-0AB0 CDHD-N1KW D4E-1A20N CJ2M-CPU34
6ES7331-7KB02-0AB0   D4E-1A20N CJ2M-CPU35
6ES7331-7KF02-0AB0 CMT3155X D4E-2C10N CJ1W-PA202
6ES7331-7PF01-0AB0 CP1EB-CPURM01 D4GL-1AFA-A CJ1W-PA205R
6ES7331-7PF11-0AB0 CP1E-E20SDR-A D4GS-NK1 CJ1W-PD571
6ES7331-7NF00-0AB0 CP1E-E30SDR-A D4JL-2NFA-C5 CJ1W-PD571
6ES7331-7SF00-0AB0 CP1E-E40SDR-A D4JL-2NFG-C5 CJ1W-PA205C
6ES7331-1KF01-0AB0 CP1E-E60DR-A D4JL-2RFA-C6 CJ1M-CPU11
6ES7331-1KF02-0AB0 CP1E-E60SDR-A D4JL-4QFA-C6 CJ1M-CPU12
  CP1E-N14DR-D D4JL-4QFA-D6 CJ1M-CPU13
6ES7332-7ND02-0AB0 CP1E-N14DT1-A D4JL-K2 CJ1M-CPU21
6ES7332-5HB01-0AB0 CP1E-N14DT-D D4JL-K3 CJ1M-CPU22
6ES7332-5HD01-0AB0 CP1E-N20DR-A D4MC-2000 CJ1M-CPU23
6ES7332-5HF00-0AB0 CP1E-N20DT-A D4MC-2000 CJ1W-AD041-V1
  CP1E-N20DT-D D4MC-2571 CJ1W-AD04U
6ES7153-1AA03-0XB0 CP1E-N30DR-A D4MC-5000 CJ1W-AD081-V1
6ES7153-2BA02-0XB0 CP1E-N30DR-D -CH D4MC-5571-N BY OMR CJ1W-DA571
6ES7153-2BA10-0XB0 CP1E-N30DT-A D4MC-5040-N CJ1W-DA041
6ES7334-0CE01-0AA0 CP1E-N30SDT-D D4N-2120 CJ1W-DA08C
6ES7334-0KE00-0AB0 CP1E-N40DR-A D4N-2122 CJ1W-DA08V
6ES7335-7HG02-0AB0 CP1E-N40DT1-A D4N-212G CJ1W-MAD42
6ES7338-4BC01-0AB0 CP1E-N40DT-A D4N-212G CJ1W-PTS15
6ES7350-1AH03-0AE0 CP1E-N40SDR-A D4N-212G CJ1W-PTS16
  CP1E-N60DR-D D4N-212H CJ1W-PTS51
6ES7307-1BA01-0AA0 CP1E-N60DT1-D D4N-2A2GR CJ1W-PTS52
6ES7307-1EA01-0AA0 CP1E-N60DT-A D4N-412G CJ1W-PH41U
6ES7307-1KA02-0AA0 CP1E-N60DT-D D4N-8B32 cj1W-NC113
  CP1H-EX40DT-D D4NA-412G cj1W-NC133
6ES7315-2AG10 CP1H-EX40DT-D D4NA-412G cj1W-NC213
6ES7315-2AH14-0AB0 CP1H-EX40DT-D D4NA-4131 cj1W-NC233
6ES7315-2EH14-0AB0 CP1H-X40DR-A D4NL-1DFA-B cj1W-NC413
6GK7343-1CX10-0XE0 CP1H-X40DR-A D4NL-1DFA-BS cj1W-NC433
6GK7343-1EX30-0XE0 CP1H-X40DR-A D4NL-1FFA-B4S CJ1W-TC001
  CP1H-X40DT-D D4NL-2FFA-BS CJ1W-TC002
374-2XH01-0AA0 CP1H-X40DT-D D4NL-4DFA-BS CJ1W-TC004
6ES7313-6CF03-0AB0 CP1H-X40DT-D D4NS-1AF CJ1W-TC101
6ES7314-1AG140AB0 CP1H-X40DT-D-SC D4NS-1AF CJ1W-CT571
6ES7317-2EK14-0AB0 CP1H-X40DT-D-SC D4NS-1AF  
  CP1H-XA40DR-A D4NS-1AF E2E-X2E1 2M
6ES7151-1AA02-0AB0 CP1H-XA40DR-A D4NS-1BF E2E-X2F1 2M
6ES7151-1AA04-0AB0 CP1H-XA40DR-A D4NS-1BF E2E-X2ME1 2M
6ES7151-1AA05-0AB0 CP1H-XA40DR-A D4NS-1CF E2E-X2D1-N 2M
6ES7151-1AA06-0AB0 CP1H-XA40DR-A D4NS-1CF E2E-X2D2-N 2M
6ES7151-1AB02-0AB0 CP1H-XA40DR-A D4NS-1CF E2E-X2D1-U-Z 2M BY OMS
6ES7151-1AB05-0AB0 CP1H-XA40DT1-D D4NS-1CF E2E-X20MD1 2M OMS
6ES7151-3BA23-0AB0 CP1H-XA40DT-D D4NS-1CF E2E-X3D1-N 2M
6ES7151-3AA23-0AB0 CP1H-XA40DT-D D4NS-2BF E2E-X3D2-N 2M
6ES7151-1BA02-0AB0 CP1H-XA40DT-D D4NS-4AF E2E-X3D1-M1G 
6ES7151-1CA00-0AB0 CP1H-Y20DT-D D4NS-4BF E2E-X5E1 2M
6ES7151-1CA00-1BL0   D4NS-4CF E2E-X5E2 2M
6ES7151-1CA00-3BL0 TM-E15S26-A1 D4NS-4CF E2E-X5MF1 5M
6ES7151-8AB00-0AB0 6ES7193-4CA20-0AA0 D4NS-4DF E2E-X1R5E1 2M
6ES7151-8AB01-0AB0 6ES7193-4CB20-0AA0 D4SL-CN3 E2E-X1R5E2 2M
6ES7151-8FB00-0AB0 6ES7193-4CC20-0AA0 D4SL-N2FFA-D E2E-X5ME1 2M
6ES7151-8FB01-0AB0 6ES7193-4CD20-0AA0 D4SL-N2GFG-D E2E-X5ME2 2M
6ES7151-7AA11-0AB0 6ES7193-4CG20-0AA0 D4SL-N2HFA-D E2E-X7D1-N 2M
6ES7151-7AA13-0AB0 6ES7193-4CA30-0AA0 D4SL-N2VFA E2E-X7D1-N 5M
6ES7151-7AA20-0AB0 6ES7193-4CB30-0AA0 D4SL-N4RFG-D E2E-X7D2-N 5M
6ES7151-7AA21-0AB0 6ES7193-4CC30-0AA0 D4SL-NK1S E2E-X8MD1 2M
6ES7151-7FA21-0AB0 6ES7193-4CD30-0AA0 D4SL-NK2 E2E-X18ME1 2M
6ES7151-3BA60-0AB0 6ES7193-4CG30-0AA0 D4SL-NK2 E2EM-X8C1 2M
  6ES7193-4CA40-0AA0 D4SL-NK3 E2E-X10E1 2M
6ES7953-8LJ20-0AA0 6ES7193-4CF40-0AA0 D4SL-NSK10-LK E2E-X10ME1 2M
6ES7953-8LJ30-0AA0 6ES7193-4CF50-0AA0 D4SL-NSK10-LK E2E-X10MF1 2M
6ES7953-8LJ31-0AA0 6ES7193-4CB00-0AA0 D4SL-NSK10-LKH E2E-X10D1-N 5M
       
Our company specializes in industrial control PLC products, touch screen, relays, power switches, USB accessories, and is 1 of the few quality distributors/agents in China.
If you have more needs.
Or need more quantity.
Or have other questions.
Please feel free to contact us.
We will give you more favorable
First-class service.
Let you buy with confidence ——>>Please contact us!

 

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Open Type
Number of Poles: 8
Customization:
Available

|

servo motor

How are servo motors used in CNC machines and other precision machining equipment?

Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:

1. Axis Control:

CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.

2. Feedback and Closed-Loop Control:

Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.

3. Rapid and Precise Speed Changes:

Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.

4. Contouring and Path Tracing:

CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.

5. Spindle Control:

In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.

6. Tool Changers and Automatic Tool Compensation:

CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.

7. Synchronized Motion and Multi-Axis Coordination:

Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.

In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

In which industries are servo motors commonly used, and what applications do they serve?

Servo motors are widely used across various industries due to their precise control capabilities and ability to deliver high torque at different speeds. Here are some industries where servo motors are commonly employed, along with their applications:

1. Robotics:

Servo motors are extensively used in robotics to control the movement of robotic limbs and joints. They enable precise positioning and accurate control, allowing robots to perform tasks with high accuracy and repeatability. Servo motors are also employed in humanoid robots, industrial manipulators, and collaborative robots (cobots).

2. Manufacturing and Automation:

In manufacturing and automation industries, servo motors are used in various applications such as conveyor systems, pick-and-place machines, packaging equipment, and assembly lines. Servo motors provide precise control over the movement of components, ensuring accurate positioning, fast response times, and high throughput.

3. CNC Machining:

Servo motors play a vital role in computer numerical control (CNC) machines, where they control the movement of axes (e.g., X, Y, and Z). These motors enable precise and smooth motion, allowing CNC machines to accurately shape and cut materials such as metal, wood, and plastics. Servo motors are also used in CNC routers, milling machines, lathes, and laser cutting equipment.

4. Aerospace and Aviation:

Servo motors find applications in the aerospace and aviation industries, particularly in flight control systems. They are used to control the movement of aircraft surfaces, such as ailerons, elevators, rudders, and flaps. Servo motors ensure precise and responsive control, contributing to the stability and maneuverability of aircraft.

5. Medical Devices:

In the medical field, servo motors are used in various devices and equipment. They are employed in robotic surgery systems, prosthetics, exoskeletons, infusion pumps, diagnostic equipment, and laboratory automation. Servo motors enable precise and controlled movements required for surgical procedures, rehabilitation, and diagnostic tests.

6. Automotive:

Servo motors have several applications in the automotive industry. They are used in electric power steering systems, throttle control, braking systems, and active suspension systems. Servo motors provide accurate control over steering, acceleration, and braking, enhancing vehicle safety and performance.

7. Entertainment and Motion Control:

Servo motors are widely used in the entertainment industry for animatronics, special effects, and motion control systems. They enable realistic movements of animatronic characters, robotic props, and camera rigs in film, television, and theme park attractions. Servo motors also find applications in motion simulators, gaming peripherals, and virtual reality systems.

In addition to these industries, servo motors are utilized in various other fields, including industrial automation, renewable energy systems, textile machinery, printing and packaging, and scientific research.

Overall, servo motors are versatile components that find widespread use in industries requiring precise motion control, accurate positioning, and high torque output. Their applications span across robotics, manufacturing, CNC machining, aerospace, medical devices, automotive, entertainment, and numerous other sectors.

China OEM New in Box Omron Servo Motor R88m-1m40030h-S2 PLC R88m-1m40030h-S2   vacuum pump booster	China OEM New in Box Omron Servo Motor R88m-1m40030h-S2 PLC R88m-1m40030h-S2   vacuum pump booster
editor by CX 2024-05-03

China Professional Beudmke Custom 2axis Planetary Reducer Box 0.5kw 600W 1kw 24V 48V BLDC Servo Motor Double Shaft wholesaler

Product Description

Product Description

Feature: 

A. High power range from 50W to 10KW
B. Dia: 40mm-220mm
C. Easy for speed & direction adjustment
D. Rich stock and fast shipping time in 10 working days
E. Strong stability for driver/controller
F. Lifetime above continuous 10000 hours
G. IP65 protection rank is available for us
H. Above 90% enery efficiency motor is available
I. 3D file is available if customers needed
J. Permanent magnet brushless dc motor
K.High-performance and stable matching driver and controller

 

Rated Output

600W

Rated Voltage

DC48V

Motor Rated Speed

3000rpm

Rated Current

15.5A

Final Rated Torque

47.9N.m

Output Rated Speed

107rpm

Protection

IP65

Brake Voltage

DC 24V

Environmental humidity

<90%

Environment temperature

0~+50ºC

Excitation

Permanent Magnet

Drive Method 

Direct Drive

Enclosure

Totally Enclosed, Self-cooled, IP65(except for shaft opening ).

For More Details Of Product Specifications,
Please Click here contact us for updated size drawing if you have other different parameter needed. Thanks

More Flange Size

DC Servo Motor with Gearbox

Please contact us to choose suitable gearbox dc servo motor. Thanks

DC Servo Motor with Planetary Gearbox

Size: 60mm, 80mm, 110mm, 130mm, 180mm
Power:200w-10KW
Voltage: 24V, 48V, 72V, 96V

DC Servo Motor with Worm Gearbox

Size: 60mm, 80mm, 110mm
Power:200w-2.35KW
Voltage: 24V, 48V, 72V, 96V

 

Company Profile

DMKE motor was founded in China, HangZhou city,Xihu (West Lake) Dis. district, in 2009. After 12 years’ creativity and development, we became 1 of the leading high-tech companies in China in dc motor industry.

We specialize in high precision micro dc gear motors, brushless motors, brushless controllers, dc servo motors, dc servo controllers etc. And we produce brushless dc motor and controller with wide power range from 5 watt to 20 kilowatt; also dc servo motor power range from 50 watt to 10 kilowatt. They are widely used in automatic guided vehicle , robots, lifting equipment,cleaning machine, medical equipment, packing machinery, and many other industrial automatic equipments.

With a plant area of 4000 square meters, we have built our own supply chain with high quality control standard and passed ISO9001 certificate of quality system.

With more than 10 engineers for brushless dc motor and controllers’ research and development, we own strong independent design and development capability. Custom-made motors and controllers are widely accepted by us. At the same time, we have engineers who can speak fluent English. That makes we can supply intime after-sales support and guidance smoothly for our customers.

Our motors are exported worldwide, and over 80% motors are exported to Europe, the United States, Saudi Arabia, Australia, Korea etc. We are looking CHINAMFG to establishing long-term business relationship together with you for mutual business success.

FAQ

Q1: What kind motors you can provide?
A1: For now, we mainly provide permanent magnet brushless dc motor, dc gear motor, micro dc motor, planetary gear motor, dc servo motor, brush dc motors, with diameter range from 16 to 220mm,and power range from 5W to 20KW.

Q2: Is there a MOQ for your motors?
A2: No. we can accept 1 pcs for sample making for your testing,and the price for sample making will have 10% to 30% difference than bulk price based on different style.

Q3: Could you send me a price list?
A3: For all of our motors, they are customized based on different requirements like power, voltage, gear ratio, rated torque and shaft diameter etc. The price also varies according to different order qty. So it’s difficult for us to provide a price list.
If you can share your detailed specification and order qty, we’ll see what offer we can provide.

Q4: Are you motors reversible?
A4: Yes, nearly all dc and ac motor are reversible. We have technical people who can teach how to get the function by different wire connection.

Q5: Is it possible for you to develop new motors if we provide the tooling cost?
A5: Yes. Please kindly share the detailed requirements like performance, size, annual quantity, target price etc. Then we’ll make our evaluation to see if we can arrange or not.

Q6:How about your delivery time?
A6: For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty.
For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.
Pleasecontact us for final reference.

Q7:What’s your warranty terms?
A6: One year

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Power Tools, Logistics Automation Agv/New Energy Field/Movement
Operating Speed: Adjust Speed
Excitation Mode: Compound
Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 10
Samples:
US$ 649/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

Are there common issues or challenges associated with servo motor systems, and how can they be addressed?

Servo motor systems are widely used in various applications, but they can encounter common issues or challenges that affect their performance and reliability. Let’s explore some of these issues and discuss potential solutions:

1. Positioning and Tracking Errors:

One common challenge in servo motor systems is positioning and tracking errors. These errors can occur due to factors such as mechanical backlash, encoder resolution limitations, or disturbances in the system. To address this issue, careful calibration and tuning of the servo control system are necessary. This includes adjusting feedback gains, implementing feedback filtering techniques, and utilizing advanced control algorithms to improve the system’s accuracy and minimize errors. Additionally, employing high-resolution encoders and backlash compensation mechanisms can help enhance the positioning and tracking performance.

2. Vibration and Resonance:

Vibration and resonance can impact the performance of servo motor systems, leading to reduced accuracy and stability. These issues can arise from mechanical resonances within the system or external disturbances. To mitigate vibration and resonance problems, it is crucial to analyze the system’s dynamics and identify critical resonant frequencies. Implementing vibration dampening techniques such as mechanical isolation, using vibration-absorbing materials, or employing active vibration control methods can help minimize the effect of vibrations and improve the system’s performance.

3. Overheating and Thermal Management:

Servo motors can generate heat during operation, and inadequate thermal management can lead to overheating and potential performance degradation. To address this issue, proper cooling and thermal management techniques should be employed. This may involve using heat sinks, fans, or liquid cooling systems to dissipate heat efficiently. Ensuring adequate ventilation and airflow around the motor and avoiding excessive current or overloading can also help prevent overheating. Monitoring the motor’s temperature and implementing temperature protection mechanisms can further safeguard the motor from thermal damage.

4. Electrical Noise and Interference:

Electrical noise and interference can affect the performance and reliability of servo motor systems. These issues can arise from electromagnetic interference (EMI) or radio frequency interference (RFI) from nearby equipment or electrical sources. To mitigate electrical noise, proper shielding and grounding techniques should be employed. Using shielded cables, ferrite cores, and grounding the motor and control system can help minimize the impact of noise and interference. Additionally, employing filtering techniques and surge protection devices can further improve system robustness against electrical disturbances.

5. System Integration and Compatibility:

Integrating a servo motor system into a larger control system or automation setup can present challenges in terms of compatibility and communication. Ensuring proper compatibility between the servo motor and the control system is crucial. This involves selecting appropriate communication protocols, such as EtherCAT or Modbus, and ensuring compatibility with the control signals and interfaces. Employing standardized communication interfaces and protocols can facilitate seamless integration and interoperability. Additionally, thorough testing and verification of the system’s compatibility before deployment can help identify and address any integration issues.

6. Maintenance and Service:

Maintenance and service requirements are important considerations for servo motor systems. Regular maintenance, including lubrication, inspection, and cleaning, can help prevent issues related to wear and tear. Following manufacturer-recommended maintenance schedules and procedures is essential to ensure the longevity and optimal performance of the motor. In case of any malfunctions or failures, having access to technical support from the manufacturer or trained service personnel can help diagnose and address problems effectively.

By being aware of these common issues and challenges associated with servo motor systems and implementing appropriate solutions, it is possible to enhance the performance, reliability, and lifespan of the servo motor system. Regular monitoring, proactive maintenance, and continuous improvement can contribute to optimizing the overall operation and efficiency of the system.

servo motor

How is the size of a servo motor determined based on application requirements?

The size of a servo motor is an important consideration when selecting a motor for a specific application. The size of the motor is determined based on various factors related to the application requirements. Let’s explore how the size of a servo motor is determined:

1. Torque Requirements:

One of the primary factors in determining the size of a servo motor is the torque requirements of the application. The motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. The required torque depends on factors such as the weight of the load, the distance from the motor’s axis of rotation, and any additional forces acting on the system. By analyzing the torque requirements, one can select a servo motor with an appropriate size and torque rating to meet the application’s needs.

2. Speed and Acceleration Requirements:

The desired speed and acceleration capabilities of the application also influence the size of the servo motor. Different applications have varying speed and acceleration requirements, and the motor needs to be capable of achieving the desired performance. Higher speeds and accelerations may require larger motors with more powerful components to handle the increased forces and stresses. By considering the required speed and acceleration, one can determine the size of the motor that can meet these demands.

3. Inertia and Load Inertia Ratio:

The inertia of the load and the inertia ratio between the load and the servo motor are important considerations in sizing the motor. Inertia refers to the resistance of an object to changes in its rotational motion. If the load has a high inertia, it requires a servo motor with sufficient size and torque to accelerate and decelerate the load effectively. The inertia ratio, which is the ratio of the load inertia to the motor inertia, affects the motor’s ability to control the load’s motion accurately. A proper balance between the load and motor inertia is necessary to achieve optimal performance and stability in the system.

4. Duty Cycle and Continuous Operation:

The duty cycle and continuous operation requirements of the application also impact the motor size selection. Duty cycle refers to the ratio of the motor’s operating time to the total cycle time. Applications with high-duty cycles or continuous operation may require larger motors that can handle sustained operation without overheating or performance degradation. It is important to consider the motor’s continuous torque rating and thermal characteristics to ensure it can operate reliably under the given duty cycle requirements.

5. Physical Space Constraints:

The physical space available for installing the servo motor is another factor to consider. The motor’s dimensions should fit within the available space, considering factors such as motor length, diameter, and any mounting requirements. It is essential to ensure that the chosen motor can be easily integrated into the system without interfering with other components or causing space constraints.

6. Weight Limitations:

The weight limitations of the application may influence the motor size selection. If there are weight restrictions, such as in mobile or lightweight applications, it is necessary to choose a servo motor that is compact and lightweight while still providing the required performance. Lighter servo motors can help optimize the overall weight and balance of the system.

7. Cost Considerations:

Cost is also a factor to consider when determining the size of a servo motor. Larger motors with higher torque and performance capabilities tend to be more expensive. It is important to strike a balance between the required performance and the cost constraints of the application. Analyzing the cost-effectiveness and overall value of the motor in relation to the application requirements is essential.

By considering these factors, one can determine the appropriate size of a servo motor that can meet the specific application requirements. It is advisable to consult with manufacturers or experts in the field to ensure the chosen motor size aligns with the application needs and provides optimal performance and reliability.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China Professional Beudmke Custom 2axis Planetary Reducer Box 0.5kw 600W 1kw 24V 48V BLDC Servo Motor Double Shaft   wholesaler China Professional Beudmke Custom 2axis Planetary Reducer Box 0.5kw 600W 1kw 24V 48V BLDC Servo Motor Double Shaft   wholesaler
editor by CX 2024-04-04

China Custom Ab60 Precision Helical Gear Planetary Reduction Machine Box 42/90/115 Stepper Servo Motor 400W 750W manufacturer

Product Description

 

 

Product Parameters

 

Name

High Precision Planetary Gearbox

Model

AB042, AB060, AB060A, AB090A, AB115, AB142, AB180, AB220

Gearing Arrangement

Planetary

Effeiency withfull load

≥97

Backlash

≤5

Weight

0.5~48kg

Gear Type

Helical Gear

Gear stages

1 stage, 2 stage 

Rated Torque

14N.m-2000N.m

Gear Ratio One-stage

3, 4, 5, 6, 7, 8, 9, 10

Gear Ratio Two-stage

15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100

Mounting Position

Horizontal (foot mounted) or Vertical (flange mounted)

Usage

stepper motor, servo motor, AC motor, DC motor, etc

features:

AB-series reducer features:

1. Helical gear design The reduction mechanism adopts the helical gear design, and its tooth shape meshing rate is more than twice that of the general spur gear, and has the characteristics of smooth operation, low noise, high output torque and low backlash

2. Collet type locking mechanism The connection between the input end and the motor adopts a collet-type locking mechanism and undergoes dynamic balance analysis to ensure the concentricity of the joint interface and zero-backlash power transmission at high input speeds
3. Modular design of motor connection board The unique modular design of the motor connecting plate and shaft is suitable for any brand and type of servo motor;
4. Efficient surface treatment technology The surface of the gearbox is treated with electroless nickel, and the connecting plate of the motor is treated with black anodic treatment to improve the environmental tolerance and corrosion resistance
5. One-piece gearbox body The gearbox and the inner ring gear adopt an integrated design, with compact structure, high precision and large output torque

 

6. Accurate concentricity of gear bar The sun gear made of the whole gear bar has strong rigidity and accurate concentricity
7. Solid, Single piece sun gear construction obtains precise concentricity with increased strength and rigidity. 8.Precision taper roller bearing support to increases radial and axial loading capacity.

 

Certifications

Packaging & Shipping

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Ab Series Gearbox, Gear Reducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

servo motor

Are there advancements or trends in servo motor technology that users should be aware of?

Yes, there have been significant advancements and emerging trends in servo motor technology that users should be aware of. These developments aim to enhance performance, improve efficiency, and provide new capabilities. Here are some noteworthy advancements and trends in servo motor technology:

1. Higher Power Density:

Advancements in servo motor design and manufacturing techniques have led to higher power densities. This means that modern servo motors can deliver more power in a smaller and lighter package. Higher power density allows for more compact and efficient machine designs, particularly in applications with limited space or weight restrictions.

2. Improved Efficiency:

Efficiency is a crucial aspect of servo motor technology. Manufacturers are continuously striving to improve motor efficiency to minimize energy consumption and reduce operating costs. Advanced motor designs, optimized winding configurations, and the use of high-quality materials contribute to higher efficiency levels, resulting in energy savings and lower heat generation.

3. Integration of Electronics and Control:

Integration of electronics and control functions directly into servo motors is becoming increasingly common. This trend eliminates the need for external motor controllers or drives, simplifies wiring and installation, and reduces overall system complexity. Integrated servo motors often include features such as on-board motion control, communication interfaces, and safety features.

4. Digitalization and Connectivity:

Servo motor technology is embracing digitalization and connectivity trends. Many modern servo motors come equipped with digital interfaces, such as Ethernet or fieldbus protocols, enabling seamless integration with industrial communication networks. This connectivity allows for real-time monitoring, diagnostics, and remote control of servo motors, facilitating condition monitoring, predictive maintenance, and system optimization.

5. Advanced Feedback Systems:

Feedback systems play a critical role in servo motor performance. Recent advancements in feedback technology have resulted in more accurate and higher-resolution encoders, resolvers, and sensors. These advanced feedback systems provide precise position and velocity information, enabling improved motion control, better accuracy, and enhanced dynamic response in servo motor applications.

6. Smart and Adaptive Control Algorithms:

Servo motor control algorithms have evolved to include smart and adaptive features. These algorithms can adapt to changing load conditions, compensate for disturbances, and optimize motor performance based on real-time feedback. Smart control algorithms contribute to smoother operation, increased stability, and improved tracking accuracy in various applications.

7. Safety and Functional Safety:

Safety is a paramount concern in industrial automation. Servo motor technology has incorporated safety features and functional safety standards to ensure the protection of personnel and equipment. Safety-rated servo motors often include features such as safe torque off (STO) functionality, safe motion control, and compliance with safety standards like ISO 13849 and IEC 61508.

It’s important for users to stay informed about these advancements and trends in servo motor technology. By understanding the latest developments, users can make informed decisions when selecting and implementing servo motors, leading to improved performance, efficiency, and reliability in their applications.

servo motor

How does the accuracy of a servo motor impact the precision of a system it operates in?

The accuracy of a servo motor has a significant impact on the precision of the system in which it operates. Here’s how the accuracy of a servo motor influences the precision of the system:

1. Positioning Control:

The accuracy of a servo motor directly affects the precision of positioning control in a system. A servo motor with high accuracy can accurately and consistently reach and maintain the desired position. This precision in positioning control is crucial in applications where precise movements, such as in robotics or manufacturing processes, are required. If the servo motor lacks accuracy, it may introduce position errors, leading to reduced precision in the system’s overall operation.

2. Repeatability:

Repeatability refers to the ability of a system to consistently achieve the same position or motion repeatedly. The accuracy of a servo motor plays a vital role in achieving high repeatability. A servo motor with high accuracy will consistently return to the same position when commanded to do so. This level of repeatability is essential in applications where consistent and precise movements are necessary, such as in assembly lines or pick-and-place operations. A lack of accuracy in the servo motor can result in variations in position from one cycle to another, reducing the overall precision of the system.

3. Error Compensation:

The accuracy of a servo motor is crucial for error compensation in a system. In many applications, external factors, such as variations in load or environmental conditions, can introduce errors in the system’s operation. An accurate servo motor can help compensate for these errors by precisely adjusting its position or motion based on feedback from sensors. This error compensation capability contributes to maintaining the precision of the system, as the servo motor can continuously adjust to minimize any deviations from the desired position or trajectory.

4. System Stability:

The accuracy of the servo motor also impacts the stability of the system. A servo motor with high accuracy can achieve stable movements and maintain control over the system’s dynamics. It can respond accurately to control signals, preventing overshoot, oscillations, or erratic behaviors that can degrade system precision. On the other hand, a servo motor with lower accuracy may introduce instability or erratic movements, compromising the overall precision of the system.

5. System Calibration and Calibration:

An accurate servo motor simplifies the calibration and fine-tuning process of a system. When a system requires calibration, an accurate servo motor provides a reliable reference point for adjustments. The precise and consistent movements of the servo motor make it easier to calibrate other components or subsystems in the system, ensuring that the entire system operates with the desired precision. If the servo motor lacks accuracy, it can be challenging to calibrate the system effectively, resulting in reduced precision in the system’s operation.

In summary, the accuracy of a servo motor has a direct impact on the precision of the system it operates in. An accurate servo motor enables precise positioning control, high repeatability, effective error compensation, system stability, and simplified calibration processes. These factors collectively contribute to achieving the desired precision in the system’s operation. Therefore, selecting a servo motor with the appropriate level of accuracy is crucial for ensuring the overall precision and performance of the system.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China Custom Ab60 Precision Helical Gear Planetary Reduction Machine Box 42/90/115 Stepper Servo Motor 400W 750W   manufacturer China Custom Ab60 Precision Helical Gear Planetary Reduction Machine Box 42/90/115 Stepper Servo Motor 400W 750W   manufacturer
editor by CX 2024-03-06

China supplier Omron Servo Motor R88m-1m40030t-S2 PLC R88m1m40030ts2 New in Box a/c vacuum pump

Product Description

HangZhou CHINAMFG Electronics Co., Ltd. is a B2B and B2C online shopping mall specializing in the industrial control electrical and electronic components industry.
In order to facilitate buyers to be able to purchase globally
We are not only an industrial control electrical and electronic retailer, but also a wholesale company. We do not have a complete list of our online stores.
If you need to purchase in bulk, please contact us for a better quote.
We hope to win your trust through reliable and competitive services.
Our aim is customer satisfaction is our biggest aim !!!!

 

6ES7953-8LG11-0AA0 6ES7193-4CA50-0AA0 D4SL-NSK10-LKH E2E-X4MD1 2M
6ES7953-8LG20-0AA0 6ES7193-4CK30-0AA0 D4V-8104SZ-N E2E-X14MD1 2M
6ES7953-8LG30-0AA0 6ES7193-4JA00-0AA0 D4V-8104Z-N E2E-C04S12-WC-B1 2M
6ES7953-8LG31-0AA0 6ES7193-4JA00-0AA0 D4V-8107Z-N BY OMR E2E-C04S12-WC-C1 2M
6ES7953-8LF11-0AA0 6ES7193-4DL00-0AA0 D4V-8108SZ E2E-C04S12-WC-B1-2 2M
6ES7953-8LF20-0AA0 6ES7193-4DL10-0AA0 D4V-8108SZ-N E2E-S05S12-WC-C1 2M
6ES7953-8LF30-0AA0 6ES7193-4DE10-0AA0 D4V-8108SZ-N E2E-S05S12-WC-B1 2M
6ES7953-8LF31-0AA0 6ES7193-4CE00-0AA0 D4V-8108SZ-N BY OMR E2E-S05S12-WC-C1-2 2M
6ES7953-8LL20-0AA0 6ES7193-4CE10-0AA0 D4V-8108Z-N E2E-C03SR8-WC-C1 2M
6ES7953-8LL31-0AA0 6ES7195-7HD80-0XA0 D4V-8108Z-N BY OMR E2B-M12KS04-WP-B1
  6ES7195-7HB00-0XA0 D4V-8111Z BY OMR E2B-M12KS04-WP-B2
6ES7131-4BF00-0AA0   D4V-8112Z E2B-M12KS04-WP-C1
6ES7134-4MB02-0AB0 6ES7131-4BF00   E2B-M12KS04-WP-C2
6ES7134-4GD00-0AB0 6ES7132-4BF00 E2B-M12LS04-M1-B1 OMS E2B-S08KS02-MC-B1 OMS
6ES7135-4GB01-0AB0 6ES7134-4GB01 E2B-M12LS04-M1-B2 OMS E2B-S08KS02-MC-B2 OMS
6ES7135-4LB02-0AB0 6ES7134-4GB11 E2B-M12LS04-M1-C1 OMS E2B-S08KS02-MC-C1 OMS
6ES7138-4DF01-0AB0 6ES7134-4GD00 E2B-M12LS04-M1-C1 OMS E2B-S08KS02-MC-C2 OMS
6ES7138-4DF11-0AB0 6ES7135-4GB01 E2B-S08KN04-WP-B1 2M OMS E2B-S08KN04-MC-B1 OMS
6ES7138-4CA01-0AB0 6ES7135-4LB02 E2B-S08KN04-WP-B2 2M OMS E2B-S08KN04-MC-B2 OMS
6ES7138-4DA04-0AB0 6ES7138-4DA04 E2B-S08KN04-WP-C1 2M OMS E2B-M12LN05-M1-C1 OMS
6ES7138-4CF03-0AB0 6ES7138-4CA01 E2B-S08KN04-WP-C2 2M OMS E2B-M12LN05-M1-C2 OMS
6ES7151-3AA23-0AB0 6ES7151-3AA23 E2B-M12KN05-M1-B1 OMS E2B-M12KS02-M1-B1 OMS
6ES7972-0BA52-0XA0 6ES7151-1AA06 E2B-M12KN05-M1-B2 OMS E2B-M12KS02-M1-B2 OMS
6ES7972-0BA12-0XA0 6ES7138-4DF11 E2B-M12KN05-M1-C1 OMS E2B-M12KS02-M1-C1 OMS
6ES7193-4GD20-0AA0 6ES7151-1BA02 E2B-M12KN05-M1-C2 OMS E2B-M12KS02-M1-C2 OMS
6ES7134-4MB02-0AB0   E2B-S08KN02-MC-B1 OMS E2B-S08KN02-WP-B1 2M OMS
  6ES7151-3BA23-0AB0 E2B-S08KN02-MC-B2 OMS E2B-S08KN02-WP-C1 2M OMS
6SL3120-1TE23-0AC0 6SL3120-2TE13-0AD0 E2B-S08KN02-MC-C1 OMS E2B-S08LN04-MC-B1 OMS
    E2B-S08KN02-MC-C2 OMS E2B-S08LN04-MC-B2 OMS
GP2501-TC11 3G3JZ-A4015 D2F-F-D CJ1W-ID261
GP2501-TC41-24V 3G3JZ-A4571 D2F-L CJ1W-ID262
GP2400-TC41-24V 3G3JZ-A4037 D2FW-G271M(D) CJ1W-MD231
GP2401-TC41-24V 3G3JZ-AB004 D2FW-G273M CJ1W-MD233
GP2300-LG41-24V 3G3JZ-AB007 D2HW-A201D CJ1W-MD261
GP2301-LG41-24V 3G3JZ-AB007 D2MQ-1 CJ1W-MD263
GP2300-SC41-24V 3G3JZ-AB015 D2MV-01L22-1C3 CJ1W-MD563
GP2301-SC41-24V 3G3JZ-AB015 D2VW-5-1M(D)(CHN) CJ1W-OA201
GP2300-TC41-24V 3G3MX2-A4007-ZV1 D2VW-5L2-1M(CHN) CJ1W-OC201
GP2301-TC41-24V 3G3MX2-A4110-ZV1 D2VW-5L2-1M(D) CJ1W-OC211
  3G3MX2-A4150-ZV1 D2X-C CJ1W-OD201
GP4301TAD 3G3MZ-AB015 D3M-01L2 CJ1W-OD211
GP4301TADW 3M6006 D3V-16-3C25 BY OMI CJ1W-OD212
GP4201TAD 3TB4322-0XB0 D40A-1C015-F CJ1W-OD231
GP4201TADW 3Z4S-CA STC-S133P-CS D40A-1C5 BY OMS CJ1W-OD232
GP4401TAD 3Z4S-LE SV-1214V D4A-3101N CJ1W-OD233
GP4401TADW   D4A-4501N CJ1W-OD261
GM4301TAD 6571-1030 VS64-CBL-03M D4A-4501N CJ1W-OD262
GM4201TAD 61F-G 110/220VAC C D4A-A00 CJ1W-OD263
GP4501TAD 61F-G1N AC110/220 D4A-C00 CJ1W-IC101
GP4501TAA 61F-G3N AC110/220 D4A-C00 CJ1W-II101
GP4501TADW 61F-GP-N AC100 D4B-2A15N CJ1W-TER01
GP4601TAA 61F-GP-N AC220 D4C-1202 CJ1W-B7A22
GP4601TAD 61F-GP-N AC220 D4C-1202 CJ1W-INT01
GP4501TMA 61F-IN AC110/220 D4C-1224 CJ1W-IDP01
GP4601TMA 6ES7-216-2BD23-0XB0 D4C-1302 CJ1W-CLK23
GP4501TMD 8PFA D4C-1402 CJ1W-CRM21
GP4601TMD A165-JRM-1 D4C-1602 CJ1W-DRM21
  A-20GV2-B D4C-3202 CJ1W-EIP21
NS5-SQ00B-V2 A22-01 D4C-4332 CJ1W-ETN21
NS5-TQ11B-V2 A22E-M-12 D4C-6224 CJ1W-ETN11
NS5-SQ11B-V2 A22Z-EG1 D4CC-3060 CJ1W-CLK21-V1
NS5-SQ10B-V2 AP-Z D4CC-4571 CJ1W-SCU21-V1
NS5-SQ10B-ECV2 B7AS-T6B6 D4CC-4060 CJ1W-SCU31-V1
NS8-TV00B-V2 B7A-T6A1 D4DS-K1 CJ1W-SRM21
NS8-TV00B-ECV2 BNL6 D4DS-K2 CJ1W-SCU41-V1
NS8-TV01B-V2 BS-1 D4DS-K2 CJ2M-MD211
NS10-TV00B-V2 BS-1 D4DS-K2 CJ2M-CPU11
NS10-TV00B-ECV2 BS-1 D4DS-K2 CJ2M-CPU12
NS10-TV01B-V2   D4DS-K3 CJ2M-CPU13
NS12-TS01B-V2 C500-CE403 D4DS-K3 CJ2M-CPU14
NS12-TS01-V2 C500-CE404 D4DS-K3 CJ2M-CPU15
NS12-TS00B-V2 C500-CE404 D4DS-K5 CJ2M-CPU31
NS12-TS00-V2 C500-CE404 D4DS-K5 CJ2M-CPU32
  CDHD-N D4E-1A10N OKUMA CJ2M-CPU33
6ES7331-7HF01-0AB0 CDHD-N1KW D4E-1A20N CJ2M-CPU34
6ES7331-7KB02-0AB0   D4E-1A20N CJ2M-CPU35
6ES7331-7KF02-0AB0 CMT3155X D4E-2C10N CJ1W-PA202
6ES7331-7PF01-0AB0 CP1EB-CPURM01 D4GL-1AFA-A CJ1W-PA205R
6ES7331-7PF11-0AB0 CP1E-E20SDR-A D4GS-NK1 CJ1W-PD571
6ES7331-7NF00-0AB0 CP1E-E30SDR-A D4JL-2NFA-C5 CJ1W-PD571
6ES7331-7SF00-0AB0 CP1E-E40SDR-A D4JL-2NFG-C5 CJ1W-PA205C
6ES7331-1KF01-0AB0 CP1E-E60DR-A D4JL-2RFA-C6 CJ1M-CPU11
6ES7331-1KF02-0AB0 CP1E-E60SDR-A D4JL-4QFA-C6 CJ1M-CPU12
  CP1E-N14DR-D D4JL-4QFA-D6 CJ1M-CPU13
6ES7332-7ND02-0AB0 CP1E-N14DT1-A D4JL-K2 CJ1M-CPU21
6ES7332-5HB01-0AB0 CP1E-N14DT-D D4JL-K3 CJ1M-CPU22
6ES7332-5HD01-0AB0 CP1E-N20DR-A D4MC-2000 CJ1M-CPU23
6ES7332-5HF00-0AB0 CP1E-N20DT-A D4MC-2000 CJ1W-AD041-V1
  CP1E-N20DT-D D4MC-2571 CJ1W-AD04U
6ES7153-1AA03-0XB0 CP1E-N30DR-A D4MC-5000 CJ1W-AD081-V1
6ES7153-2BA02-0XB0 CP1E-N30DR-D -CH D4MC-5571-N BY OMR CJ1W-DA571
6ES7153-2BA10-0XB0 CP1E-N30DT-A D4MC-5040-N CJ1W-DA041
6ES7334-0CE01-0AA0 CP1E-N30SDT-D D4N-2120 CJ1W-DA08C
6ES7334-0KE00-0AB0 CP1E-N40DR-A D4N-2122 CJ1W-DA08V
6ES7335-7HG02-0AB0 CP1E-N40DT1-A D4N-212G CJ1W-MAD42
6ES7338-4BC01-0AB0 CP1E-N40DT-A D4N-212G CJ1W-PTS15
6ES7350-1AH03-0AE0 CP1E-N40SDR-A D4N-212G CJ1W-PTS16
  CP1E-N60DR-D D4N-212H CJ1W-PTS51
6ES7307-1BA01-0AA0 CP1E-N60DT1-D D4N-2A2GR CJ1W-PTS52
6ES7307-1EA01-0AA0 CP1E-N60DT-A D4N-412G CJ1W-PH41U
6ES7307-1KA02-0AA0 CP1E-N60DT-D D4N-8B32 cj1W-NC113
  CP1H-EX40DT-D D4NA-412G cj1W-NC133
6ES7315-2AG10 CP1H-EX40DT-D D4NA-412G cj1W-NC213
6ES7315-2AH14-0AB0 CP1H-EX40DT-D D4NA-4131 cj1W-NC233
6ES7315-2EH14-0AB0 CP1H-X40DR-A D4NL-1DFA-B cj1W-NC413
6GK7343-1CX10-0XE0 CP1H-X40DR-A D4NL-1DFA-BS cj1W-NC433
6GK7343-1EX30-0XE0 CP1H-X40DR-A D4NL-1FFA-B4S CJ1W-TC001
  CP1H-X40DT-D D4NL-2FFA-BS CJ1W-TC002
374-2XH01-0AA0 CP1H-X40DT-D D4NL-4DFA-BS CJ1W-TC004
6ES7313-6CF03-0AB0 CP1H-X40DT-D D4NS-1AF CJ1W-TC101
6ES7314-1AG140AB0 CP1H-X40DT-D-SC D4NS-1AF CJ1W-CT571
6ES7317-2EK14-0AB0 CP1H-X40DT-D-SC D4NS-1AF  
  CP1H-XA40DR-A D4NS-1AF E2E-X2E1 2M
6ES7151-1AA02-0AB0 CP1H-XA40DR-A D4NS-1BF E2E-X2F1 2M
6ES7151-1AA04-0AB0 CP1H-XA40DR-A D4NS-1BF E2E-X2ME1 2M
6ES7151-1AA05-0AB0 CP1H-XA40DR-A D4NS-1CF E2E-X2D1-N 2M
6ES7151-1AA06-0AB0 CP1H-XA40DR-A D4NS-1CF E2E-X2D2-N 2M
6ES7151-1AB02-0AB0 CP1H-XA40DR-A D4NS-1CF E2E-X2D1-U-Z 2M BY OMS
6ES7151-1AB05-0AB0 CP1H-XA40DT1-D D4NS-1CF E2E-X20MD1 2M OMS
6ES7151-3BA23-0AB0 CP1H-XA40DT-D D4NS-1CF E2E-X3D1-N 2M
6ES7151-3AA23-0AB0 CP1H-XA40DT-D D4NS-2BF E2E-X3D2-N 2M
6ES7151-1BA02-0AB0 CP1H-XA40DT-D D4NS-4AF E2E-X3D1-M1G 
6ES7151-1CA00-0AB0 CP1H-Y20DT-D D4NS-4BF E2E-X5E1 2M
6ES7151-1CA00-1BL0   D4NS-4CF E2E-X5E2 2M
6ES7151-1CA00-3BL0 TM-E15S26-A1 D4NS-4CF E2E-X5MF1 5M
6ES7151-8AB00-0AB0 6ES7193-4CA20-0AA0 D4NS-4DF E2E-X1R5E1 2M
6ES7151-8AB01-0AB0 6ES7193-4CB20-0AA0 D4SL-CN3 E2E-X1R5E2 2M
6ES7151-8FB00-0AB0 6ES7193-4CC20-0AA0 D4SL-N2FFA-D E2E-X5ME1 2M
6ES7151-8FB01-0AB0 6ES7193-4CD20-0AA0 D4SL-N2GFG-D E2E-X5ME2 2M
6ES7151-7AA11-0AB0 6ES7193-4CG20-0AA0 D4SL-N2HFA-D E2E-X7D1-N 2M
6ES7151-7AA13-0AB0 6ES7193-4CA30-0AA0 D4SL-N2VFA E2E-X7D1-N 5M
6ES7151-7AA20-0AB0 6ES7193-4CB30-0AA0 D4SL-N4RFG-D E2E-X7D2-N 5M
6ES7151-7AA21-0AB0 6ES7193-4CC30-0AA0 D4SL-NK1S E2E-X8MD1 2M
6ES7151-7FA21-0AB0 6ES7193-4CD30-0AA0 D4SL-NK2 E2E-X18ME1 2M
6ES7151-3BA60-0AB0 6ES7193-4CG30-0AA0 D4SL-NK2 E2EM-X8C1 2M
  6ES7193-4CA40-0AA0 D4SL-NK3 E2E-X10E1 2M
6ES7953-8LJ20-0AA0 6ES7193-4CF40-0AA0 D4SL-NSK10-LK E2E-X10ME1 2M
6ES7953-8LJ30-0AA0 6ES7193-4CF50-0AA0 D4SL-NSK10-LK E2E-X10MF1 2M
6ES7953-8LJ31-0AA0 6ES7193-4CB00-0AA0 D4SL-NSK10-LKH E2E-X10D1-N 5M
       
Our company specializes in industrial control PLC products, touch screen, relays, power switches, USB accessories, and is 1 of the few quality distributors/agents in China.
If you have more needs.
Or need more quantity.
Or have other questions.
Please feel free to contact us.
We will give you more favorable
First-class service.
Let you buy with confidence ——>>Please contact us!

 

 

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: High Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Open Type
Number of Poles: 8
Customization:
Available

|

servo motor

How does the cost of servo motors vary based on their specifications and features?

The cost of servo motors can vary significantly based on their specifications and features. Several factors influence the price of servo motors, and understanding these factors can help in selecting the most cost-effective option for a specific application. Let’s explore in detail how the cost of servo motors can vary:

1. Power Rating:

One of the primary factors affecting the cost of a servo motor is its power rating, which is typically measured in watts or kilowatts. Higher power-rated servo motors generally cost more than lower-rated ones due to the increased materials and manufacturing required to handle higher power levels. The power rating of a servo motor is determined by the torque and speed requirements of the application. Higher torque and speed capabilities often correspond to higher costs.

2. Torque and Speed:

The torque and speed capabilities of a servo motor directly impact its cost. Servo motors designed for high torque and high-speed applications tend to be more expensive due to the need for robust construction, specialized materials, and advanced control electronics. Motors with higher torque and speed ratings often require more powerful magnets, larger windings, and higher precision components, contributing to the increase in cost.

3. Frame Size:

The physical size or frame size of a servo motor also plays a role in determining its cost. Servo motors come in various frame sizes, such as NEMA (National Electrical Manufacturers Association) standard sizes in North America. Larger frame sizes generally command higher prices due to the increased materials and manufacturing complexity required to build larger motors. Smaller frame sizes, on the other hand, may be more cost-effective but may have limitations in terms of torque and speed capabilities.

4. Feedback Mechanism:

The feedback mechanism used in a servo motor affects its cost. Servo motors typically employ encoders or resolvers to provide feedback on the rotor position. Higher-resolution encoders or more advanced feedback technologies can increase the cost of the motor. For example, servo motors with absolute encoders, which provide position information even after power loss, tend to be more expensive than those with incremental encoders.

5. Control Features and Technology:

The control features and technology incorporated into a servo motor can influence its cost. Advanced servo motors may offer features such as built-in controllers, fieldbus communication interfaces, advanced motion control algorithms, or integrated safety functions. These additional features contribute to the cost of the motor but can provide added value and convenience in certain applications. Standard servo motors with basic control functionality may be more cost-effective for simpler applications.

6. Brand and Reputation:

The brand and reputation of the servo motor manufacturer can impact its cost. Established and reputable brands often command higher prices due to factors such as quality assurance, reliability, technical support, and extensive product warranties. While motors from less-known or generic brands may be more affordable, they may not offer the same level of performance, reliability, or long-term support.

7. Customization and Application-Specific Requirements:

If a servo motor needs to meet specific customization or application-specific requirements, such as specialized mounting options, environmental sealing, or compliance with industry standards, the cost may increase. Customization often involves additional engineering, design, and manufacturing efforts, which can lead to higher prices compared to off-the-shelf servo motors.

It’s important to note that the cost of a servo motor is not the sole indicator of its quality or suitability for a particular application. It is essential to carefully evaluate the motor’s specifications, features, and performance characteristics in relation to the application requirements to make an informed decision.

In summary, the cost of servo motors varies based on factors such as power rating, torque and speed capabilities, frame size, feedback mechanism, control features and technology, brand reputation, and customization requirements. By considering these factors and comparing different options, it is possible to select a servo motor that strikes the right balance between performance and cost-effectiveness for a specific application.

servo motor

Are there different types of servo motors, and how do they differ?

Yes, there are different types of servo motors available, each with its own characteristics and applications. The variations among servo motors can be attributed to factors such as construction, control mechanisms, power requirements, and performance specifications. Let’s explore some of the common types of servo motors and how they differ:

1. DC Servo Motors:

DC servo motors are widely used in various applications. They consist of a DC motor combined with a feedback control system. The control system typically includes a position or velocity feedback sensor, such as an encoder or a resolver. DC servo motors offer good speed and torque control and are often employed in robotics, automation, and hobbyist projects. They can be operated with a separate motor driver or integrated into servo motor units with built-in control electronics.

2. AC Servo Motors:

AC servo motors are designed for high-performance applications that require precise control and fast response times. They are typically three-phase motors and are driven by sinusoidal AC waveforms. AC servo motors often incorporate advanced control algorithms and feedback systems to achieve accurate position, velocity, and torque control. These motors are commonly used in industrial automation, CNC machines, robotics, and other applications that demand high precision and dynamic performance.

3. Brushed Servo Motors:

Brushed servo motors feature a traditional brushed DC motor design. They consist of a rotor with a commutator and carbon brushes that make physical contact with the commutator. The brushes provide electrical connections, allowing the motor’s magnetic field to interact with the rotor’s windings. Brushed servo motors are known for their simplicity and cost-effectiveness. However, they may require more maintenance due to brush wear, and they generally have lower efficiency and shorter lifespan compared to brushless servo motors.

4. Brushless Servo Motors:

Brushless servo motors, also known as brushless DC (BLDC) motors, offer several advantages over brushed motors. They eliminate the need for brushes and commutators, resulting in improved reliability, higher efficiency, and longer lifespan. Brushless servo motors rely on electronic commutation, typically using Hall effect sensors or encoder feedback for accurate rotor position detection. These motors are widely used in robotics, industrial automation, aerospace, and other applications that require high-performance motion control with minimal maintenance.

5. Linear Servo Motors:

Linear servo motors are designed to provide linear motion instead of rotational motion. They consist of a primary part (stator) and a secondary part (slider or forcer) that interact magnetically to generate linear motion. Linear servo motors offer advantages such as high speed, high acceleration, and precise positioning along a linear axis. They find applications in various industries, including semiconductor manufacturing, packaging, printing, and machine tools.

6. Micro Servo Motors:

Micro servo motors are small-sized servo motors often used in applications with limited space and low power requirements. They are commonly found in hobbyist projects, model airplanes, remote-controlled vehicles, and small robotic systems. Micro servo motors are lightweight, compact, and offer reasonable precision and control for their size.

These are some of the different types of servo motors available, each catering to specific applications and requirements. The choice of servo motor type depends on factors such as the desired performance, accuracy, power requirements, environmental conditions, and cost considerations. Understanding the differences between servo motor types is essential for selecting the most suitable motor for a particular application.

servo motor

In which industries are servo motors commonly used, and what applications do they serve?

Servo motors are widely used across various industries due to their precise control capabilities and ability to deliver high torque at different speeds. Here are some industries where servo motors are commonly employed, along with their applications:

1. Robotics:

Servo motors are extensively used in robotics to control the movement of robotic limbs and joints. They enable precise positioning and accurate control, allowing robots to perform tasks with high accuracy and repeatability. Servo motors are also employed in humanoid robots, industrial manipulators, and collaborative robots (cobots).

2. Manufacturing and Automation:

In manufacturing and automation industries, servo motors are used in various applications such as conveyor systems, pick-and-place machines, packaging equipment, and assembly lines. Servo motors provide precise control over the movement of components, ensuring accurate positioning, fast response times, and high throughput.

3. CNC Machining:

Servo motors play a vital role in computer numerical control (CNC) machines, where they control the movement of axes (e.g., X, Y, and Z). These motors enable precise and smooth motion, allowing CNC machines to accurately shape and cut materials such as metal, wood, and plastics. Servo motors are also used in CNC routers, milling machines, lathes, and laser cutting equipment.

4. Aerospace and Aviation:

Servo motors find applications in the aerospace and aviation industries, particularly in flight control systems. They are used to control the movement of aircraft surfaces, such as ailerons, elevators, rudders, and flaps. Servo motors ensure precise and responsive control, contributing to the stability and maneuverability of aircraft.

5. Medical Devices:

In the medical field, servo motors are used in various devices and equipment. They are employed in robotic surgery systems, prosthetics, exoskeletons, infusion pumps, diagnostic equipment, and laboratory automation. Servo motors enable precise and controlled movements required for surgical procedures, rehabilitation, and diagnostic tests.

6. Automotive:

Servo motors have several applications in the automotive industry. They are used in electric power steering systems, throttle control, braking systems, and active suspension systems. Servo motors provide accurate control over steering, acceleration, and braking, enhancing vehicle safety and performance.

7. Entertainment and Motion Control:

Servo motors are widely used in the entertainment industry for animatronics, special effects, and motion control systems. They enable realistic movements of animatronic characters, robotic props, and camera rigs in film, television, and theme park attractions. Servo motors also find applications in motion simulators, gaming peripherals, and virtual reality systems.

In addition to these industries, servo motors are utilized in various other fields, including industrial automation, renewable energy systems, textile machinery, printing and packaging, and scientific research.

Overall, servo motors are versatile components that find widespread use in industries requiring precise motion control, accurate positioning, and high torque output. Their applications span across robotics, manufacturing, CNC machining, aerospace, medical devices, automotive, entertainment, and numerous other sectors.

China supplier Omron Servo Motor R88m-1m40030t-S2 PLC R88m1m40030ts2 New in Box   a/c vacuum pump		China supplier Omron Servo Motor R88m-1m40030t-S2 PLC R88m1m40030ts2 New in Box   a/c vacuum pump
editor by CX 2024-03-01

China Hot selling High Precision High Torque Durable Servo Motor Planetary Robot Gear Box Flange Reducer Helical Gearbox Stepping Motor vacuum pump electric

Product Description

Planetary Gearbox AB Series Square Flange Helical Bevel Planetary Transmission Gearboxes Servo Motor

Product Overview:

 

Precision planetary gear reducer is another name for planetary gear reducer in the industry. Its main transmission structure is planetary gear, sun gear and inner gear ring.

Compared with other gear reducers, precision planetary gear reducers have the characteristics of high rigidity, high precision (single stage can achieve less than 1 point), high transmission efficiency (single stage can achieve 97% – 98%), high torque/volume ratio, lifelong maintenance-free, etc. Most of them are installed on stepper motor and servo motor to reduce speed, improve torque and match inertia.

  AB series precision planetary gear box reducer AB60/90/115/142/180/220

features:

AB-series reducer features:

1. Helical gear design The reduction mechanism adopts the helical gear design, and its tooth shape meshing rate is more than twice that of the general spur gear, and has the characteristics of smooth operation, low noise, high output torque and low backlash

2. Collet type locking mechanism The connection between the input end and the motor adopts a collet-type locking mechanism and undergoes dynamic balance analysis to ensure the concentricity of the joint interface and zero-backlash power transmission at high input speeds
3. Modular design of motor connection board The unique modular design of the motor connecting plate and shaft is suitable for any brand and type of servo motor;
4. Efficient surface treatment technology The surface of the gearbox is treated with electroless nickel, and the connecting plate of the motor is treated with black anodic treatment to improve the environmental tolerance and corrosion resistance
5. One-piece gearbox body The gearbox and the inner ring gear adopt an integrated design, with compact structure, high precision and large output torque

 

6. Accurate concentricity of gear bar The sun gear made of the whole gear bar has strong rigidity and accurate concentricity
7. Solid, Single piece sun gear construction obtains precise concentricity with increased strength and rigidity. 8.Precision taper roller bearing support to increases radial and axial loading capacity.

Our Advantages

 

SERIES: AB/ ABR/ AD/ADS/ ADR/ AF/ AFR/ AFX/ AFXR/ AE/ AER/ AE/ AERS


PLF series, PLE series, ZPLF series, ZPLE series, AB series, ABR series and many other models are available.

Product Description

Planetary Gearbox AB Series Square Flange Helical Bevel Planetary Transmission Gearboxes Servo Motor

Advantages of the planetary gearbox:

Low backlash

High Efficiency

High Torque

High Input Speed

High Stability

High Reduction Ratio

 

Product Parameters

Name

High Precision Planetary Gearbox

Model

AB042, AB060, AB060A, AB090A, AB115, AB142, AB180, AB220

Gearing Arrangement

Planetary

Effeiency withfull load

≥97

Backlash

≤5

Weight

0.5~48kg

Gear Type

Helical Gear

Gear stages

1 stage, 2 stage 

Rated Torque

14N.m-2000N.m

Gear Ratio One-stage

3, 4, 5, 6, 7, 8, 9, 10

Gear Ratio Two-stage

15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100

Mounting Position

Horizontal (foot mounted) or Vertical (flange mounted)

Usage

stepper motor, servo motor, AC motor, DC motor, etc

 

Applications

 

Company Profile

Certifications

Packaging & Shipping

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Ab Series Gearbox, Gear Reducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

servo motor

Where can individuals find reliable resources for learning more about servo motors and their applications?

Individuals interested in learning more about servo motors and their applications can access a variety of reliable resources. These resources provide valuable information, technical knowledge, and practical insights. Here are some places where individuals can find reliable resources for expanding their understanding of servo motors:

1. Manufacturer Websites:

Leading servo motor manufacturers often provide detailed documentation, technical specifications, application notes, and white papers on their websites. These resources offer in-depth information about their products, technologies, and best practices for servo motor applications. Users can visit the websites of prominent manufacturers to access reliable and up-to-date information.

2. Industry Associations and Organizations:

Industry associations and organizations related to automation, robotics, or specific industries often offer educational materials and resources on servo motors. They may provide technical publications, webinars, seminars, and training programs focused on servo motor technology and applications. Examples of such organizations include the International Society of Automation (ISA), the Robotics Industries Association (RIA), and the Society of Automotive Engineers (SAE).

3. Books and Technical Publications:

Books dedicated to servo motor technology, control systems, and industrial automation can provide comprehensive knowledge on the subject. Some recommended titles include “Servo Motors and Industrial Control Theory” by Riazollah Firoozian, “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and Bill Drury, and “Servo Motors and Motion Control: An Introduction” by Albert F. Seabury. Technical publications and journals such as IEEE Transactions on Industrial Electronics and Control Engineering Practice also offer valuable insights and research findings.

4. Online Courses and Training Platforms:

Various online learning platforms offer courses and training programs focused on servo motors and their applications. Websites like Udemy, Coursera, and LinkedIn Learning provide access to video-based courses taught by industry experts. These courses cover topics such as servo motor fundamentals, motion control, programming, and troubleshooting. By enrolling in these courses, individuals can acquire structured knowledge and practical skills related to servo motors.

5. Technical Forums and Discussion Groups:

Participating in technical forums and discussion groups can be an effective way to learn from industry professionals and enthusiasts. Websites like Stack Exchange, Reddit, and engineering-focused forums host discussions on servo motors, where individuals can ask questions, share experiences, and gain insights from the community. It’s important to verify the credibility of the information shared in such forums and rely on responses from trusted contributors.

6. Trade Shows and Conferences:

Attending trade shows, exhibitions, and conferences related to automation, robotics, or specific industries can provide opportunities to learn about servo motors. These events often feature presentations, workshops, and demonstrations by industry experts and manufacturers. Participants can gain hands-on experience, interact with professionals, and stay updated with the latest advancements in servo motor technology.

By leveraging these reliable resources, individuals can deepen their knowledge and understanding of servo motors and their applications. It is advisable to consult multiple sources and cross-reference information to ensure a comprehensive understanding of the subject.

servo motor

What factors should be considered when selecting a servo motor for a specific application?

When selecting a servo motor for a specific application, several factors need to be considered. These factors help ensure that the chosen servo motor meets the requirements and performs optimally in the intended application. Here are some key factors to consider:

1. Torque and Power Requirements:

One of the primary considerations is the torque and power requirements of the application. The servo motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. Additionally, the power rating of the motor should match the power supply available in the application. It is essential to evaluate the torque-speed characteristics of the servo motor to ensure it can deliver the required performance.

2. Speed and Acceleration:

The required speed and acceleration capabilities of the servo motor should align with the application’s needs. Different applications have varying speed and acceleration requirements, and the servo motor should be able to meet these demands. It is crucial to consider both the maximum speed that the motor can achieve and the time it takes to accelerate or decelerate to specific speeds. Evaluating the servo motor’s speed-torque characteristics and acceleration capabilities is necessary for selecting the right motor.

3. Positioning Accuracy and Repeatability:

The desired positioning accuracy and repeatability of the application play a significant role in servo motor selection. If precise positioning is crucial, a servo motor with high accuracy and low positioning errors should be chosen. The feedback mechanism, such as encoders or resolvers, should provide the required resolution to achieve the desired accuracy. Repeatability, the ability to consistently reach the same position, should also be considered, especially in applications where repetitive movements are necessary.

4. Environmental Conditions:

The environmental conditions in which the servo motor will operate should be taken into account. Factors such as temperature extremes, humidity, dust, and vibration can affect the motor’s performance and lifespan. In harsh environments, it may be necessary to choose a servo motor with appropriate protection ratings, such as IP (Ingress Protection) ratings, to ensure reliable operation and longevity.

5. Control System Compatibility:

The compatibility of the servo motor with the control system used in the application is crucial. The motor should be compatible with the control signals and communication protocols employed in the system. This includes considerations such as voltage compatibility, control signal types (analog, digital, pulse), and communication interfaces (such as Ethernet, CAN, or Modbus). Ensuring compatibility will facilitate seamless integration and efficient control of the servo motor within the application.

6. Size and Weight Constraints:

The physical size and weight limitations of the application should be considered when selecting a servo motor. The motor’s dimensions should fit within the available space, and its weight should not exceed the application’s weight capacity. Compact and lightweight servo motors may be preferred in applications where space is limited or weight is a critical factor.

7. Cost Considerations:

The cost of the servo motor and its overall value for the application should be evaluated. It is essential to consider the initial purchase cost as well as the long-term maintenance and operational costs. While cost is a factor, it should not be the sole determining factor, as compromising on quality or performance may lead to suboptimal results.

By considering these factors, one can make an informed decision when selecting a servo motor for a specific application. It is recommended to consult with manufacturers or experts in the field to ensure the chosen servo motor meets the application’s requirements and provides reliable and efficient performance.

servo motor

Can servo motors be used in robotics, and if so, how are they implemented?

Yes, servo motors are commonly used in robotics due to their precise control capabilities and suitability for a wide range of robotic applications. When implementing servo motors in robotics, several factors need to be considered. Here’s an overview of how servo motors are used and implemented in robotics:

1. Joint Actuation:

Servo motors are often used to actuate the joints of robotic systems. Each joint in a robot typically requires a motor to control its movement. Servo motors provide the necessary torque and angular control to accurately position the joint. They can rotate between specific angles, allowing the robot to achieve the desired configuration and perform precise movements.

2. Position Control:

Servo motors excel at position control, which is essential for robotics applications. They can accurately maintain a specific position and respond quickly to control signals. By incorporating servo motors in robotic joints, precise positioning control can be achieved, enabling the robot to perform tasks with accuracy and repeatability.

3. Closed-Loop Control:

Implementing servo motors in robotics involves utilizing closed-loop control systems. Feedback sensors, such as encoders or resolvers, are attached to the servo motors to provide real-time feedback on the motor’s position. This feedback is used to continuously adjust the motor’s behavior and ensure accurate positioning. Closed-loop control allows the robot to compensate for any errors or disturbances and maintain precise control over its movements.

4. Control Architecture:

In robotics, servo motors are typically controlled using a combination of hardware and software. The control architecture encompasses the control algorithms, microcontrollers or embedded systems, and communication interfaces. The control system receives input signals, such as desired joint positions or trajectories, and generates control signals to drive the servo motors. The control algorithms, such as PID control, are used to calculate the appropriate adjustments based on the feedback information from the sensors.

5. Kinematics and Dynamics:

When implementing servo motors in robotics, the kinematics and dynamics of the robot must be considered. The kinematics deals with the study of the robot’s motion and position, while the dynamics focuses on the forces and torques involved in the robot’s movement. Servo motors need to be properly sized and selected based on the robot’s kinematic and dynamic requirements to ensure optimal performance and stability.

6. Integration and Programming:

Servo motors in robotics need to be integrated into the overall robot system. This involves mechanical mounting and coupling the motors to the robot’s joints, connecting the feedback sensors, and integrating the control system. Additionally, programming or configuring the control software is necessary to define the desired movements and control parameters for the servo motors. This programming can be done using robot-specific programming languages or software frameworks.

By utilizing servo motors in robotics and implementing them effectively, robots can achieve precise and controlled movements. Servo motors enable accurate positioning, fast response times, and closed-loop control, resulting in robots that can perform tasks with high accuracy, repeatability, and versatility. Whether it’s a humanoid robot, industrial manipulator, or collaborative robot (cobot), servo motors play a vital role in their actuation and control.

China Hot selling High Precision High Torque Durable Servo Motor Planetary Robot Gear Box Flange Reducer Helical Gearbox Stepping Motor   vacuum pump electricChina Hot selling High Precision High Torque Durable Servo Motor Planetary Robot Gear Box Flange Reducer Helical Gearbox Stepping Motor   vacuum pump electric
editor by CX 2024-01-15