China wholesaler 80 Servo Motors/AC Servo Motor 220V/CE and UL Certificates with 0.4kw vacuum pump for ac

Product Description

ST Series Servo Motors
Ultra-high intrinsic coercively, high temperature rare earth permanent, magnet material, strong resistance to magnetic energy.
Using electromagnetic design optimization, almost with the entire speed, range constant torque output, Sinusoidal magnet field design, smooth low-speed torque high overload, capability, Class F insulation, IP55 protection structure, environmental applicability, safe and reliable use.
 

Technical Data                    
Frame size 60ST-L00630A 60ST-L01330A 60ST-L01930A 80ST-L01330A 80ST-L57130A 80ST-L03330A 90ST-L57130A 90ST-L5710A 90ST-L 0571 1A  
Rated Voltage(3phase) 220V 220V 220V 220V 220V 220V 220V 220V 220V  
Rated Power(kw) 0.2 0.4 0.6 0.4 0.75 1 0.75 0.73 1  
Rated Torque(N.m) 0.6 1.3 1.9 1.3 2.4 3.3 2.4 3.5 4  
Max Torque(N.m) 1.911 3.8 5.73 3.9 7.2 9.9 7.2 10.5 12  
Rated Speed(r/min) 3000 3000 3000 3000 3000 3000 3000 2000 3000  
Rated current(A) 1.5 2.8 3.5 2.6 4.2 4.5 3 3 4  
V/Krpm 28 28 28 21.05 22.77 29.27 51 67 60  
Ω/phase 11.6 5.83 3.49 1.858 0.901 1.081 3.2 4.06 2.69  
mH/phase 22 12.23 8.47 11.956 6.552 8.29 7 9.7 6.21  
LA(mm) 106 131 154 135 160 181 152 175 185  
   
Frame size 110ST-L57130A 110ST-L04030A 110ST-L05030A 110ST-L06571A 110ST-L06030A 130ST-L 0571 1A 130ST-L 0571 1A 130ST-L06571A 130-7720  
Rated Voltage(3 phase) 220V 220V 220V 220V 220V 220V 220V 220V 220V  
Rated Power(kw) 0.6 1.2 1.5 1.2 1.6 1 1.3 1.5 1.6  
Rated Torque(N.m) 2.00 4 5 6 6 4 5 6 7.7  
Max Torque(N.m) 6 12 15 18 18 13 15 18 23.1  
Rated Speed(r/min) 3000 3000 3000 2000 3000 2500 2500 2500 2000  
Rated current(A) 4 5 6 6 8 4 5 6 6  
V/Krpm 23.59 33.74 33.84 41.39 30.54 37.72 38.67 37.34 47.59  
Ω/phase 0.982 0.779 0.567 0.64 0.338 1.108 0.867 0.605 0.66  
mH/phase 2.98 3.026 2.316 2.764 1.515 3.76 3.124 2.317 2.83  
LA(mm) 158 189 204 217 217 165 173 183 197  
   
Frame size 130ST-L5710A 130ST-L5715A 130ST-L5710A 130ST-L10015A 130ST-L10571A 130ST-L15015A 130ST-L15571A   150-23571 150-27571
Rated Voltage(3 phase) 220V 220V 220V 220V 220V 220V 220V   220V  
Rated Power(kw) 1.6 2 2.4 1.5 2.6 2.3 3.8   1.6  
Rated Torque(N.m) 7.70 7.7 7.7 10 10 15 15   7.7  
Max Torque(N.m) 23.1 23.1 23.1 30 30 45 45   23.1  
Rated Speed(r/min) 2000.00 2500 3000 1500 2500 1500 2500   2000  
Rated current(A) 6 7.5 9 6 10 9.5 17   6  
V/Krpm 47.59 40.03 32.22 64.89 38.76 68.13 34.07   47.59  
Ω/phase 0.66 0.454 0.282 0.801 0.262 0.458 0.102   0.66  
mH/phase 2.83 1.913 1.232 3.675 1.258 2.369 0.598   2.83  
LA(mm) 197 197 197 218 218 263 263   197  
       
Frame size 150ST-L15571A 150ST-L18571A 150ST-L23571A 150ST-L27571A 180ST-L19571A 180ST-L23571A 180ST-L31018A      
Rated Power(KW) 3.8 3.6 4.7 5.5 4 5 6      
Rated Torque(N.m) 15 18 23 27 19 23 31      
Rated Speed(rpm) 2500 2000 2000 2000 2000 2000 1800      
Rated Current(A) 16.5 16.5 20.5 20.5 16.8 28 22      
Max Torque(N.m) 45 54 69 81 57.3 71.6 79.5      
Voltage(V) 220 220 220 220 220 220 220      
       
Frame size 190ST-H44017A 190ST-H56017A 190ST-H76015A 190ST-H95015A 230ST-H11415A 230ST-H14615A 230ST-H19115A 230ST-H23515A 130-7720  
Rated Power(KW) 8 10 12 15 18 23 30 37 220V  
Rated Torque(N.m) 44 56 76 95 114 146 191 235 1.6  
Rated Speed(rpm) 1700 1700 1500 1500 1500 1500 1500 1500 7.7  
Rated Current(A) 17.5 20.1 27 34 44.1 52.8 68.5 83.4 2000  
 Efficiency 90.5 91.1 91.6 92.1 92.5 93 93.6 94.2    
Voltage(V) 380 380 380 380 380 380 380 380 47.59  
Rotor Inertia(Kg.cm2) 0.01 0.014 0.016 0.019 0.035 0.045 0.056 0.071    
weight(kg) 38.8 43.8 49.5 54.7 73 88 105 122    

                                                

Terms of Price: FOB HangZhou
Encoder brand: Tama-Gawa, 2500P8
With Brake, please contact me to ask price
Minimum quantity: 1pc, for more than 50pcs give 5% discount

Motor with drives pics:
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial, Universal, Household Appliances, Power Tools
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Species: Servo Motor
Rotor Structure: Squirrel-Cage
Casing Protection: Protection Type
Customization:
Available

|

servo motor

Are there advancements or trends in servo motor technology that users should be aware of?

Yes, there have been significant advancements and emerging trends in servo motor technology that users should be aware of. These developments aim to enhance performance, improve efficiency, and provide new capabilities. Here are some noteworthy advancements and trends in servo motor technology:

1. Higher Power Density:

Advancements in servo motor design and manufacturing techniques have led to higher power densities. This means that modern servo motors can deliver more power in a smaller and lighter package. Higher power density allows for more compact and efficient machine designs, particularly in applications with limited space or weight restrictions.

2. Improved Efficiency:

Efficiency is a crucial aspect of servo motor technology. Manufacturers are continuously striving to improve motor efficiency to minimize energy consumption and reduce operating costs. Advanced motor designs, optimized winding configurations, and the use of high-quality materials contribute to higher efficiency levels, resulting in energy savings and lower heat generation.

3. Integration of Electronics and Control:

Integration of electronics and control functions directly into servo motors is becoming increasingly common. This trend eliminates the need for external motor controllers or drives, simplifies wiring and installation, and reduces overall system complexity. Integrated servo motors often include features such as on-board motion control, communication interfaces, and safety features.

4. Digitalization and Connectivity:

Servo motor technology is embracing digitalization and connectivity trends. Many modern servo motors come equipped with digital interfaces, such as Ethernet or fieldbus protocols, enabling seamless integration with industrial communication networks. This connectivity allows for real-time monitoring, diagnostics, and remote control of servo motors, facilitating condition monitoring, predictive maintenance, and system optimization.

5. Advanced Feedback Systems:

Feedback systems play a critical role in servo motor performance. Recent advancements in feedback technology have resulted in more accurate and higher-resolution encoders, resolvers, and sensors. These advanced feedback systems provide precise position and velocity information, enabling improved motion control, better accuracy, and enhanced dynamic response in servo motor applications.

6. Smart and Adaptive Control Algorithms:

Servo motor control algorithms have evolved to include smart and adaptive features. These algorithms can adapt to changing load conditions, compensate for disturbances, and optimize motor performance based on real-time feedback. Smart control algorithms contribute to smoother operation, increased stability, and improved tracking accuracy in various applications.

7. Safety and Functional Safety:

Safety is a paramount concern in industrial automation. Servo motor technology has incorporated safety features and functional safety standards to ensure the protection of personnel and equipment. Safety-rated servo motors often include features such as safe torque off (STO) functionality, safe motion control, and compliance with safety standards like ISO 13849 and IEC 61508.

It’s important for users to stay informed about these advancements and trends in servo motor technology. By understanding the latest developments, users can make informed decisions when selecting and implementing servo motors, leading to improved performance, efficiency, and reliability in their applications.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

Can you explain the difference between a servo motor and a regular electric motor?

A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.

A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.

On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.

The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.

Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.

Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.

In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.

China wholesaler 80 Servo Motors/AC Servo Motor 220V/CE and UL Certificates with 0.4kw   vacuum pump for ac	China wholesaler 80 Servo Motors/AC Servo Motor 220V/CE and UL Certificates with 0.4kw   vacuum pump for ac
editor by CX 2024-04-29