Product Description
ST Series Servo Motors
Ultra-high intrinsic coercively, high temperature rare earth permanent, magnet material, strong resistance to magnetic energy.
Using electromagnetic design optimization, almost with the entire speed, range constant torque output, Sinusoidal magnet field design, smooth low-speed torque high overload, capability, Class F insulation, IP55 protection structure, environmental applicability, safe and reliable use.
Technical Data | ||||||||||
Frame size | 60ST-L00630A | 60ST-L01330A | 60ST-L01930A | 80ST-L01330A | 80ST-L57130A | 80ST-L03330A | 90ST-L57130A | 90ST-L5710A | 90ST-L 0571 1A | |
Rated Voltage(3phase) | 220V | 220V | 220V | 220V | 220V | 220V | 220V | 220V | 220V | |
Rated Power(kw) | 0.2 | 0.4 | 0.6 | 0.4 | 0.75 | 1 | 0.75 | 0.73 | 1 | |
Rated Torque(N.m) | 0.6 | 1.3 | 1.9 | 1.3 | 2.4 | 3.3 | 2.4 | 3.5 | 4 | |
Max Torque(N.m) | 1.911 | 3.8 | 5.73 | 3.9 | 7.2 | 9.9 | 7.2 | 10.5 | 12 | |
Rated Speed(r/min) | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 3000 | 2000 | 3000 | |
Rated current(A) | 1.5 | 2.8 | 3.5 | 2.6 | 4.2 | 4.5 | 3 | 3 | 4 | |
V/Krpm | 28 | 28 | 28 | 21.05 | 22.77 | 29.27 | 51 | 67 | 60 | |
Ω/phase | 11.6 | 5.83 | 3.49 | 1.858 | 0.901 | 1.081 | 3.2 | 4.06 | 2.69 | |
mH/phase | 22 | 12.23 | 8.47 | 11.956 | 6.552 | 8.29 | 7 | 9.7 | 6.21 | |
LA(mm) | 106 | 131 | 154 | 135 | 160 | 181 | 152 | 175 | 185 | |
Frame size | 110ST-L57130A | 110ST-L04030A | 110ST-L05030A | 110ST-L06571A | 110ST-L06030A | 130ST-L 0571 1A | 130ST-L 0571 1A | 130ST-L06571A | 130-7720 | |
Rated Voltage(3 phase) | 220V | 220V | 220V | 220V | 220V | 220V | 220V | 220V | 220V | |
Rated Power(kw) | 0.6 | 1.2 | 1.5 | 1.2 | 1.6 | 1 | 1.3 | 1.5 | 1.6 | |
Rated Torque(N.m) | 2.00 | 4 | 5 | 6 | 6 | 4 | 5 | 6 | 7.7 | |
Max Torque(N.m) | 6 | 12 | 15 | 18 | 18 | 13 | 15 | 18 | 23.1 | |
Rated Speed(r/min) | 3000 | 3000 | 3000 | 2000 | 3000 | 2500 | 2500 | 2500 | 2000 | |
Rated current(A) | 4 | 5 | 6 | 6 | 8 | 4 | 5 | 6 | 6 | |
V/Krpm | 23.59 | 33.74 | 33.84 | 41.39 | 30.54 | 37.72 | 38.67 | 37.34 | 47.59 | |
Ω/phase | 0.982 | 0.779 | 0.567 | 0.64 | 0.338 | 1.108 | 0.867 | 0.605 | 0.66 | |
mH/phase | 2.98 | 3.026 | 2.316 | 2.764 | 1.515 | 3.76 | 3.124 | 2.317 | 2.83 | |
LA(mm) | 158 | 189 | 204 | 217 | 217 | 165 | 173 | 183 | 197 | |
Frame size | 130ST-L5710A | 130ST-L5715A | 130ST-L5710A | 130ST-L10015A | 130ST-L10571A | 130ST-L15015A | 130ST-L15571A | 150-23571 | 150-27571 | |
Rated Voltage(3 phase) | 220V | 220V | 220V | 220V | 220V | 220V | 220V | 220V | ||
Rated Power(kw) | 1.6 | 2 | 2.4 | 1.5 | 2.6 | 2.3 | 3.8 | 1.6 | ||
Rated Torque(N.m) | 7.70 | 7.7 | 7.7 | 10 | 10 | 15 | 15 | 7.7 | ||
Max Torque(N.m) | 23.1 | 23.1 | 23.1 | 30 | 30 | 45 | 45 | 23.1 | ||
Rated Speed(r/min) | 2000.00 | 2500 | 3000 | 1500 | 2500 | 1500 | 2500 | 2000 | ||
Rated current(A) | 6 | 7.5 | 9 | 6 | 10 | 9.5 | 17 | 6 | ||
V/Krpm | 47.59 | 40.03 | 32.22 | 64.89 | 38.76 | 68.13 | 34.07 | 47.59 | ||
Ω/phase | 0.66 | 0.454 | 0.282 | 0.801 | 0.262 | 0.458 | 0.102 | 0.66 | ||
mH/phase | 2.83 | 1.913 | 1.232 | 3.675 | 1.258 | 2.369 | 0.598 | 2.83 | ||
LA(mm) | 197 | 197 | 197 | 218 | 218 | 263 | 263 | 197 | ||
Frame size | 150ST-L15571A | 150ST-L18571A | 150ST-L23571A | 150ST-L27571A | 180ST-L19571A | 180ST-L23571A | 180ST-L31018A | |||
Rated Power(KW) | 3.8 | 3.6 | 4.7 | 5.5 | 4 | 5 | 6 | |||
Rated Torque(N.m) | 15 | 18 | 23 | 27 | 19 | 23 | 31 | |||
Rated Speed(rpm) | 2500 | 2000 | 2000 | 2000 | 2000 | 2000 | 1800 | |||
Rated Current(A) | 16.5 | 16.5 | 20.5 | 20.5 | 16.8 | 28 | 22 | |||
Max Torque(N.m) | 45 | 54 | 69 | 81 | 57.3 | 71.6 | 79.5 | |||
Voltage(V) | 220 | 220 | 220 | 220 | 220 | 220 | 220 | |||
Frame size | 190ST-H44017A | 190ST-H56017A | 190ST-H76015A | 190ST-H95015A | 230ST-H11415A | 230ST-H14615A | 230ST-H19115A | 230ST-H23515A | 130-7720 | |
Rated Power(KW) | 8 | 10 | 12 | 15 | 18 | 23 | 30 | 37 | 220V | |
Rated Torque(N.m) | 44 | 56 | 76 | 95 | 114 | 146 | 191 | 235 | 1.6 | |
Rated Speed(rpm) | 1700 | 1700 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 7.7 | |
Rated Current(A) | 17.5 | 20.1 | 27 | 34 | 44.1 | 52.8 | 68.5 | 83.4 | 2000 | |
Efficiency | 90.5 | 91.1 | 91.6 | 92.1 | 92.5 | 93 | 93.6 | 94.2 | ||
Voltage(V) | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 380 | 47.59 | |
Rotor Inertia(Kg.cm2) | 0.01 | 0.014 | 0.016 | 0.019 | 0.035 | 0.045 | 0.056 | 0.071 | ||
weight(kg) | 38.8 | 43.8 | 49.5 | 54.7 | 73 | 88 | 105 | 122 |
Terms of Price: FOB HangZhou |
Encoder brand: Tama-Gawa, 2500P8 |
With Brake, please contact me to ask price |
Minimum quantity: 1pc, for more than 50pcs give 5% discount |
Motor with drives pics:
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Application: | Industrial, Universal, Household Appliances, Power Tools |
---|---|
Operating Speed: | Constant Speed |
Number of Stator: | Three-Phase |
Species: | Servo Motor |
Rotor Structure: | Squirrel-Cage |
Casing Protection: | Protection Type |
Customization: |
Available
|
|
---|
Are there advancements or trends in servo motor technology that users should be aware of?
Yes, there have been significant advancements and emerging trends in servo motor technology that users should be aware of. These developments aim to enhance performance, improve efficiency, and provide new capabilities. Here are some noteworthy advancements and trends in servo motor technology:
1. Higher Power Density:
Advancements in servo motor design and manufacturing techniques have led to higher power densities. This means that modern servo motors can deliver more power in a smaller and lighter package. Higher power density allows for more compact and efficient machine designs, particularly in applications with limited space or weight restrictions.
2. Improved Efficiency:
Efficiency is a crucial aspect of servo motor technology. Manufacturers are continuously striving to improve motor efficiency to minimize energy consumption and reduce operating costs. Advanced motor designs, optimized winding configurations, and the use of high-quality materials contribute to higher efficiency levels, resulting in energy savings and lower heat generation.
3. Integration of Electronics and Control:
Integration of electronics and control functions directly into servo motors is becoming increasingly common. This trend eliminates the need for external motor controllers or drives, simplifies wiring and installation, and reduces overall system complexity. Integrated servo motors often include features such as on-board motion control, communication interfaces, and safety features.
4. Digitalization and Connectivity:
Servo motor technology is embracing digitalization and connectivity trends. Many modern servo motors come equipped with digital interfaces, such as Ethernet or fieldbus protocols, enabling seamless integration with industrial communication networks. This connectivity allows for real-time monitoring, diagnostics, and remote control of servo motors, facilitating condition monitoring, predictive maintenance, and system optimization.
5. Advanced Feedback Systems:
Feedback systems play a critical role in servo motor performance. Recent advancements in feedback technology have resulted in more accurate and higher-resolution encoders, resolvers, and sensors. These advanced feedback systems provide precise position and velocity information, enabling improved motion control, better accuracy, and enhanced dynamic response in servo motor applications.
6. Smart and Adaptive Control Algorithms:
Servo motor control algorithms have evolved to include smart and adaptive features. These algorithms can adapt to changing load conditions, compensate for disturbances, and optimize motor performance based on real-time feedback. Smart control algorithms contribute to smoother operation, increased stability, and improved tracking accuracy in various applications.
7. Safety and Functional Safety:
Safety is a paramount concern in industrial automation. Servo motor technology has incorporated safety features and functional safety standards to ensure the protection of personnel and equipment. Safety-rated servo motors often include features such as safe torque off (STO) functionality, safe motion control, and compliance with safety standards like ISO 13849 and IEC 61508.
It’s important for users to stay informed about these advancements and trends in servo motor technology. By understanding the latest developments, users can make informed decisions when selecting and implementing servo motors, leading to improved performance, efficiency, and reliability in their applications.
Can you explain the concept of torque and speed in relation to servo motors?
Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:
Torque:
Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).
The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.
It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.
Speed:
Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).
The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.
It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.
Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.
Can you explain the difference between a servo motor and a regular electric motor?
A servo motor and a regular electric motor are both types of electric motors, but they have distinct differences in terms of design, control, and functionality.
A regular electric motor, also known as an induction motor or a DC motor, is designed to convert electrical energy into mechanical energy. It consists of a rotor, which rotates, and a stator, which surrounds the rotor and generates a rotating magnetic field. The rotor is connected to an output shaft, and when current flows through the motor’s windings, it creates a magnetic field that interacts with the stator’s magnetic field, resulting in rotational motion.
On the other hand, a servo motor is a more specialized type of electric motor that incorporates additional components for precise control of position, speed, and acceleration. It consists of a regular electric motor, a sensor or encoder, and a feedback control system. The sensor or encoder provides feedback on the motor’s current position, and this information is used by the control system to adjust the motor’s behavior.
The key difference between a servo motor and a regular electric motor lies in their control mechanisms. A regular electric motor typically operates at a fixed speed based on the voltage and frequency of the power supply. In contrast, a servo motor can be controlled to rotate to a specific angle or position and maintain that position accurately. The control system continuously monitors the motor’s actual position through the feedback sensor and adjusts the motor’s operation to achieve the desired position or follow a specific trajectory.
Another distinction is the torque output of the motors. Regular electric motors generally provide high torque at low speeds and lower torque at higher speeds. In contrast, servo motors are designed to deliver high torque at both low and high speeds, which makes them suitable for applications that require precise and dynamic motion control.
Furthermore, servo motors often have a more compact and lightweight design compared to regular electric motors. They are commonly used in applications where precise positioning, speed control, and responsiveness are critical, such as robotics, CNC machines, automation systems, and remote-controlled vehicles.
In summary, while both servo motors and regular electric motors are used to convert electrical energy into mechanical energy, servo motors offer enhanced control capabilities, precise positioning, and high torque at various speeds, making them well-suited for applications that require accurate and dynamic motion control.
editor by CX 2024-04-29