China Professional Factory Price Original CHINAMFG Sqn30.111A2700 Damper Actuator Servo Motor for Industrial Gas Burner vacuum pump oil

Product Description

Factory Price Original CHINAMFG SQN30.111A2700 Damper Actuator Servo Motor For Industrial Gas Burner

OVERVIEW    

Spacious connection chamber for ease of installation

Actuators can be delivered ready installed on butterfly valves BVG, BVGF, BVA, BVAF, BVH, BVHS or linear flow control VFC

Actuator IC 40 is designed for all applications that require precise, controlled rotary movement between 0° and 90°. It can be mounted directly CHINAMFG the butterfy valves BVG, BVGF, BVA, BVAF, BVH, BVHS or linear fow control VFC in order to control the gas and air fow rates on gas burners. Actuators and butterfy valves or linear fow control VFC can also be delivered ready assembled as butterfy valves with actuatorIBG,IBGF,IBA,IBAF,IBH,IBHS orlinear fow control IFC.

PRODUCT PARAMETERS

Name Servo motor
Brand Siemens 
Model SQN30.111A2700 
Origin Germany
Deliver Time 3~15 days
Usage gas burner accessories

  

TheIC 40 can be used on continuously-controlled burners and on stage-controlled burners.

Settings on the actuator IC 40 can be made using a PC with

the programming software BCSoft. All the relevant settings

for the process are made using the software via an optical

interface. Various operating modes, which may be modifed,

are stored in the unit. In addition, the control type (two-point

signal, three-point step signal or continuous control), running

times, adjustment angles and intermediate positions can be

programmed.

The actuator can also be controlled “by hand” using the soft-

ware.

Once set, all the parameters can be saved on the PC and

copied from there into other actuators, thus saving time dur-

ing the commissioning process.

Service technicians can call up statistical data using BCSoft,

such as hours of operation, actuating cycles and a fault history.

Some values can also be set to zero, for example to record

data over a specifc period of time.

Examples of application

For processes that require a homogeneous temperature dis-

tribution in the furnace. The actuator IC 40 is controlled by

a two-point controller and operates in On/Off or High/Low intermittent mode.
The actuator closes when the voltage sup-ply is interrupted. The running time can be adjusted between 5 and 25 seconds.

Function

The actuator IC 40 moves the butterfy valve towards 0° or 90°. There are 4 possible positions which the actuator can approach in steps. Any intermediate position is possible in continuous three-point step mode. Optionally, the actuator can also approach anyintermediate position via an additional current input.The slow fashing blue LED indicates that the motor of actuator  IC 40is moving. The positionindicator on the housingindicates the opening angle. Further visualization and operation are performed on a PC using the BCSoft software.

RECOMMEND PRODUCTS

 

WARNING

1,Do not install it in the following places
(1)Places where special drugs or corrosive gases are present (e.g. ammonia, sulfur, hydrochloric acid, ethylene compounds, etc.)
(2)Places where water drops or is too wet.
(3) High temperature places.
(4) A place where the vibration lasts for a long time.
2, Please connect according to the specified basis.
3, In order to prevent electric shock and meter damage, please connect the power supply last. Misunderstanding that touching other subterminals can cause accidents and damage to the meter.
4,The load of each terminal connection should not exceed the rated value.
5,Please use the power supply with the same voltage and frequency as indicated by the machine.
6,For timers and auxiliary relays used as additional functions, please select reliable products and correctly form loops according to your needs.
7,Please ground according to the standard above D type grounding specified in the electrical equipment technical standard, and be sure to ground the burner body.
8,Do not tie the power cord and the high-voltage cable of the ignition transformer with the wire of the flame monitoring rod, and do not put it in the same wire tube, please wire separately.In particular, the high-voltage cable should be distributed separately, 10 cm away from the burner controller Above.
9,Please connect the ignition transformer high-voltage cable reliably to ensure that there is no bad contact. Poor contact will produce high frequency waves, radio noise, etc., causing misoperation. In addition, install the ignition transformer directly with the burner body or the metal part electrically connected to the burner body.
10,After connecting cables, ensure that the cables are correctly connected. Incorrect wiring may damage the unit or cause incorrect actions.

ABOUT US
company-HangZhou-YHG-Heating-Science-Technology-Co-ltd.html

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: CE, ISO
Customized: Non-Customized
Surface Treatment: Natural
Fuel: Gas
Range of Applications: Industrial
Type: Servo Motor
Samples:
US$ 250/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

How is the size of a servo motor determined based on application requirements?

The size of a servo motor is an important consideration when selecting a motor for a specific application. The size of the motor is determined based on various factors related to the application requirements. Let’s explore how the size of a servo motor is determined:

1. Torque Requirements:

One of the primary factors in determining the size of a servo motor is the torque requirements of the application. The motor should be able to generate sufficient torque to handle the load and overcome any resistance or friction in the system. The required torque depends on factors such as the weight of the load, the distance from the motor’s axis of rotation, and any additional forces acting on the system. By analyzing the torque requirements, one can select a servo motor with an appropriate size and torque rating to meet the application’s needs.

2. Speed and Acceleration Requirements:

The desired speed and acceleration capabilities of the application also influence the size of the servo motor. Different applications have varying speed and acceleration requirements, and the motor needs to be capable of achieving the desired performance. Higher speeds and accelerations may require larger motors with more powerful components to handle the increased forces and stresses. By considering the required speed and acceleration, one can determine the size of the motor that can meet these demands.

3. Inertia and Load Inertia Ratio:

The inertia of the load and the inertia ratio between the load and the servo motor are important considerations in sizing the motor. Inertia refers to the resistance of an object to changes in its rotational motion. If the load has a high inertia, it requires a servo motor with sufficient size and torque to accelerate and decelerate the load effectively. The inertia ratio, which is the ratio of the load inertia to the motor inertia, affects the motor’s ability to control the load’s motion accurately. A proper balance between the load and motor inertia is necessary to achieve optimal performance and stability in the system.

4. Duty Cycle and Continuous Operation:

The duty cycle and continuous operation requirements of the application also impact the motor size selection. Duty cycle refers to the ratio of the motor’s operating time to the total cycle time. Applications with high-duty cycles or continuous operation may require larger motors that can handle sustained operation without overheating or performance degradation. It is important to consider the motor’s continuous torque rating and thermal characteristics to ensure it can operate reliably under the given duty cycle requirements.

5. Physical Space Constraints:

The physical space available for installing the servo motor is another factor to consider. The motor’s dimensions should fit within the available space, considering factors such as motor length, diameter, and any mounting requirements. It is essential to ensure that the chosen motor can be easily integrated into the system without interfering with other components or causing space constraints.

6. Weight Limitations:

The weight limitations of the application may influence the motor size selection. If there are weight restrictions, such as in mobile or lightweight applications, it is necessary to choose a servo motor that is compact and lightweight while still providing the required performance. Lighter servo motors can help optimize the overall weight and balance of the system.

7. Cost Considerations:

Cost is also a factor to consider when determining the size of a servo motor. Larger motors with higher torque and performance capabilities tend to be more expensive. It is important to strike a balance between the required performance and the cost constraints of the application. Analyzing the cost-effectiveness and overall value of the motor in relation to the application requirements is essential.

By considering these factors, one can determine the appropriate size of a servo motor that can meet the specific application requirements. It is advisable to consult with manufacturers or experts in the field to ensure the chosen motor size aligns with the application needs and provides optimal performance and reliability.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China Professional Factory Price Original CHINAMFG Sqn30.111A2700 Damper Actuator Servo Motor for Industrial Gas Burner   vacuum pump oil	China Professional Factory Price Original CHINAMFG Sqn30.111A2700 Damper Actuator Servo Motor for Industrial Gas Burner   vacuum pump oil
editor by CX 2024-04-19