China best Servo Motor 750 Watt Servo Motor with Driver AC Servo Motor 750 AC Servo Motor 750 with Driver vacuum pump belt

Product Description

Servo Motor 750 WATT Servo Motor WITH DRIVER ac Servo Motor 750 ac Servo Motor 750 with driver
Our high voltage AC servo motor, power range from 100W to 3kW, can be equipped with a variety of precision encoders,Suitable for our AC servo driver. This series of motors adopts the industry advanced magnetic circuit design and high temperature resistant permanent magnet material, the operation is very stable, the overload capacity is strong, the vibration noise and the heating are small, is the optional scheme to improve the equipment performance and reduce cost.

Series of application fields:
Novotech high voltage servo has the characteristics of high performance, high quality, low cost and so on, its size is small, easy to install, high performance-price ratio, high reliability; suitable for electronic processing equipment, automatic grasping equipment, special machine tools, textile and clothing equipment, feeding manipulator, packaging equipment, printing equipment, engraving equipment, wire processing equipment, laser processing equipment, battery processing equipment, ceramic equipment and so on. Meet the application requirements of high precision positioning control and smooth and low speed operation of machinery and equipment.

Specification of 60 series motor:
 

Motor model HMS60M-06430B-2 HMS60M-12730B-2
Rated power (w) 200 400
Rated linear voltage (V) 220 220
Rated linear current (A) 1.1 2.1
Rated speed (rpm) 3000 3000
Rated torque (N.M) 0.64 1.27
Peak torque (N.M) 2.23 4.46
Back EMF (V/1000R/MIN) 32.6 32.3
Torque factor(N.m/A) 0.58 0.6
Rotor inertia (KG.M²) 0.26*0.0001 0.61*0.0001
Winding (inter-wire) resistance (Ω) 10.63  7.1
Winding (inter-wire) inductance (mh) 17.1 13.8
Electrical time constant (MS) 1.61 1.94
Motor insulation grade CLASS F
Protection grade IP65
Environmental requirements for use Ambient temperature:-20 ºC to + 50 ºC      ambient humidity: relative humidity < 90% (no frosting condition)

Mechanical dimension diagram of 60 series motor:

Matched driver drawing:

Specification of 80 series motor:

Motor model HMS80M-12730B-2 HMS80M-23930B-2 HMS80M-3220B-2
Rated power (w) 400 750 1000
Rated linear voltage (V) 220 220 220
Rated linear current (A) 2.3 4 5.6
Rated speed (rpm) 3000 3000 3000
Rated torque (N.M) 1.27 2.39 3.2
Peak torque (N.M) 4.46 8.36 11.1
Back EMF (V/1000R/MIN) 36.8 36.6 35.6
Torque factor(N.m/A) 0.55 0.6 0.57
Rotor inertia (KG.M²) 0.69*0.0001 1.71*0.0001 2.17*0.0001
Winding (inter-wire) resistance (Ω) 3.69 1.65 1.1
Winding (inter-wire) inductance (mH) 14.25 7.4 5
Electrical time constant (MS) 3.86 4.5 4.5
Motor insulation grade CLASS F
Protection grade IP65
Environmental requirements for use Ambient temperature:-20 ºC to + 50 ºC      ambient humidity: relative humidity < 90% (no frosting condition)

Mechanical dimension diagram of 80 motor:

Matched driver drawing:

  /* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

servo motor

Where can individuals find reliable resources for learning more about servo motors and their applications?

Individuals interested in learning more about servo motors and their applications can access a variety of reliable resources. These resources provide valuable information, technical knowledge, and practical insights. Here are some places where individuals can find reliable resources for expanding their understanding of servo motors:

1. Manufacturer Websites:

Leading servo motor manufacturers often provide detailed documentation, technical specifications, application notes, and white papers on their websites. These resources offer in-depth information about their products, technologies, and best practices for servo motor applications. Users can visit the websites of prominent manufacturers to access reliable and up-to-date information.

2. Industry Associations and Organizations:

Industry associations and organizations related to automation, robotics, or specific industries often offer educational materials and resources on servo motors. They may provide technical publications, webinars, seminars, and training programs focused on servo motor technology and applications. Examples of such organizations include the International Society of Automation (ISA), the Robotics Industries Association (RIA), and the Society of Automotive Engineers (SAE).

3. Books and Technical Publications:

Books dedicated to servo motor technology, control systems, and industrial automation can provide comprehensive knowledge on the subject. Some recommended titles include “Servo Motors and Industrial Control Theory” by Riazollah Firoozian, “Electric Motors and Drives: Fundamentals, Types, and Applications” by Austin Hughes and Bill Drury, and “Servo Motors and Motion Control: An Introduction” by Albert F. Seabury. Technical publications and journals such as IEEE Transactions on Industrial Electronics and Control Engineering Practice also offer valuable insights and research findings.

4. Online Courses and Training Platforms:

Various online learning platforms offer courses and training programs focused on servo motors and their applications. Websites like Udemy, Coursera, and LinkedIn Learning provide access to video-based courses taught by industry experts. These courses cover topics such as servo motor fundamentals, motion control, programming, and troubleshooting. By enrolling in these courses, individuals can acquire structured knowledge and practical skills related to servo motors.

5. Technical Forums and Discussion Groups:

Participating in technical forums and discussion groups can be an effective way to learn from industry professionals and enthusiasts. Websites like Stack Exchange, Reddit, and engineering-focused forums host discussions on servo motors, where individuals can ask questions, share experiences, and gain insights from the community. It’s important to verify the credibility of the information shared in such forums and rely on responses from trusted contributors.

6. Trade Shows and Conferences:

Attending trade shows, exhibitions, and conferences related to automation, robotics, or specific industries can provide opportunities to learn about servo motors. These events often feature presentations, workshops, and demonstrations by industry experts and manufacturers. Participants can gain hands-on experience, interact with professionals, and stay updated with the latest advancements in servo motor technology.

By leveraging these reliable resources, individuals can deepen their knowledge and understanding of servo motors and their applications. It is advisable to consult multiple sources and cross-reference information to ensure a comprehensive understanding of the subject.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

servo_motorservo_motor
editor by lmc 2024-12-04