China best AC Motor and DC 12V Servo Leeson Speed Master Induction Motor Price vacuum pump

Product Description

Y2 10HP 15HP 20HP 25HP 30HP 40HP 50HP 60HP Three 3 Phase AC induction electric Motor

Recommendation

 

Product Description

 

Model kw HP Current Speed Eff Power Factor Tst/Tn Ist/In Tmax/Tn
Y2-90L-4 1.5 2 3.65A 1400 rpm 79% 0.79 2.3 6.5 2.3

Company Profile

 

FAQ

  1. There are other factors that cause motor vibration and noise!
    Axial vibration and noise of end caps
    The axial vibration of the end cover is 1 of the sources of mechanical noise, which is mainly excited by the bearing vibration, which is more important in small motors. The smaller the axial dynamic stiffness of the end cover, the easier it is to excite larger vibration speed and noise.

     
    Vibration and noise of the brush unit

    The vibration and noise of the brush device are caused by the poor surface condition of the commutator, the large gap between the brush and the brush holder, the small brush pressure or the improper pressure application which makes the brush skew, and the brush holder, brush holder and brush rod. It is caused by structural and technological reasons such as insufficient stiffness.

    When the DC motor is running, the sliding contact condition of the brush and the commutator, as well as the cuprous oxide film formed on the surface of the commutator and a layer of graphite film and dust particles covered on it, not only affect the commutation performance of the motor, but also affect the commutation performance of the motor. to vibration and noise.

     
    Practice has proved that due to the low temperature of the sliding contact surface at no load, the above-mentioned film is not easy to form, and the dry friction between the brush and the commutator increases the noise. For example, when the no-load operation cycle of the rolling DC motor accounts for more than 50% of the total time, the noise under no-load conditions is 6~10dB higher than that under load. This vibration is different from the vibration of the commutator surface due to mechanical reasons, which can be detected when the motor is running at low speed (vibration is felt when the brush is touched by hand). The frequency spectrum of brush vibration noise generated by sliding contact is generally in the range of 1000~-8000Hz, and it does not change much when the motor speed changes, which is 1 of the characteristics that distinguish it from mechanical reasons.

     
    The brush vibration noise produced by the sliding contact is also related to the brush polarity. For example, the positive brush of a DC generator has less vibration than the negative brush; because the positive brush can separate graphite and carbon crystals, absorb moisture on the surface of the commutator to form a lubricating film, and the negative brush removes it. The formation of the sliding contact film is also related to the grade of the brush. The selection of the grade is first to ensure good commutation performance, but at the same time, the vibration and noise of the brush should also be considered.

     
    In addition to mechanical noise, aerodynamic noise is also a major problem in motor noise control. Especially for high-speed motors, this problem is relatively concentrated. In the tweet after bearing, Ms. participated in the meeting and chose some content to share with you.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 1/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

servo motor

What maintenance practices are recommended for ensuring the longevity of servo motors?

Maintaining servo motors properly is crucial to ensure their longevity and reliable performance. Here are some recommended maintenance practices:

1. Regular Cleaning:

Regularly clean the servo motor to remove dust, debris, and other contaminants that can affect its performance. Use a soft brush or compressed air to clean the motor’s exterior and ventilation ports. Avoid using excessive force or liquid cleaners that could damage the motor.

2. Lubrication:

Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the motor. Lubricate the motor’s bearings, gears, and other moving parts as per the specified schedule. Proper lubrication reduces friction, minimizes wear, and helps maintain optimal performance.

3. Inspections:

Regularly inspect the servo motor for signs of wear, damage, or loose connections. Check for any unusual noises, vibrations, or overheating during operation, as these can indicate potential issues. If any abnormalities are detected, consult the manufacturer’s documentation or seek professional assistance for further evaluation and repair.

4. Electrical Connections:

Ensure that all electrical connections to the servo motor, such as power cables and signal wires, are secure and properly insulated. Loose or damaged connections can lead to electrical problems, voltage fluctuations, or signal interference, which can affect the motor’s performance and longevity.

5. Environmental Considerations:

Take into account the operating environment of the servo motor. Ensure that the motor is protected from excessive moisture, dust, extreme temperatures, and corrosive substances. If necessary, use appropriate enclosures or protective measures to safeguard the motor from adverse environmental conditions.

6. Software and Firmware Updates:

Stay updated with the latest software and firmware releases provided by the servo motor manufacturer. These updates often include bug fixes, performance enhancements, and new features that can improve the motor’s functionality and reliability. Follow the manufacturer’s instructions for safely updating the motor’s software or firmware.

7. Training and Documentation:

Ensure that personnel responsible for the maintenance of servo motors are properly trained and familiar with the manufacturer’s guidelines and documentation. This includes understanding recommended maintenance procedures, safety precautions, and troubleshooting techniques. Regular training and access to up-to-date documentation are essential for effective servo motor maintenance.

8. Professional Servicing:

If a servo motor requires complex repairs or servicing beyond regular maintenance, it is advisable to consult a qualified technician or contact the manufacturer’s service center. Attempting to repair or modify the motor without proper expertise can lead to further damage or safety hazards.

By following these maintenance practices, servo motors can operate optimally and have an extended lifespan. Regular cleaning, lubrication, inspections, secure electrical connections, environmental considerations, software updates, training, and professional servicing all contribute to ensuring the longevity and reliable performance of servo motors.

servo motor

How does the accuracy of a servo motor impact the precision of a system it operates in?

The accuracy of a servo motor has a significant impact on the precision of the system in which it operates. Here’s how the accuracy of a servo motor influences the precision of the system:

1. Positioning Control:

The accuracy of a servo motor directly affects the precision of positioning control in a system. A servo motor with high accuracy can accurately and consistently reach and maintain the desired position. This precision in positioning control is crucial in applications where precise movements, such as in robotics or manufacturing processes, are required. If the servo motor lacks accuracy, it may introduce position errors, leading to reduced precision in the system’s overall operation.

2. Repeatability:

Repeatability refers to the ability of a system to consistently achieve the same position or motion repeatedly. The accuracy of a servo motor plays a vital role in achieving high repeatability. A servo motor with high accuracy will consistently return to the same position when commanded to do so. This level of repeatability is essential in applications where consistent and precise movements are necessary, such as in assembly lines or pick-and-place operations. A lack of accuracy in the servo motor can result in variations in position from one cycle to another, reducing the overall precision of the system.

3. Error Compensation:

The accuracy of a servo motor is crucial for error compensation in a system. In many applications, external factors, such as variations in load or environmental conditions, can introduce errors in the system’s operation. An accurate servo motor can help compensate for these errors by precisely adjusting its position or motion based on feedback from sensors. This error compensation capability contributes to maintaining the precision of the system, as the servo motor can continuously adjust to minimize any deviations from the desired position or trajectory.

4. System Stability:

The accuracy of the servo motor also impacts the stability of the system. A servo motor with high accuracy can achieve stable movements and maintain control over the system’s dynamics. It can respond accurately to control signals, preventing overshoot, oscillations, or erratic behaviors that can degrade system precision. On the other hand, a servo motor with lower accuracy may introduce instability or erratic movements, compromising the overall precision of the system.

5. System Calibration and Calibration:

An accurate servo motor simplifies the calibration and fine-tuning process of a system. When a system requires calibration, an accurate servo motor provides a reliable reference point for adjustments. The precise and consistent movements of the servo motor make it easier to calibrate other components or subsystems in the system, ensuring that the entire system operates with the desired precision. If the servo motor lacks accuracy, it can be challenging to calibrate the system effectively, resulting in reduced precision in the system’s operation.

In summary, the accuracy of a servo motor has a direct impact on the precision of the system it operates in. An accurate servo motor enables precise positioning control, high repeatability, effective error compensation, system stability, and simplified calibration processes. These factors collectively contribute to achieving the desired precision in the system’s operation. Therefore, selecting a servo motor with the appropriate level of accuracy is crucial for ensuring the overall precision and performance of the system.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China best AC Motor and DC 12V Servo Leeson Speed Master Induction Motor Price   vacuum pump	China best AC Motor and DC 12V Servo Leeson Speed Master Induction Motor Price   vacuum pump
editor by CX 2024-04-12