Product Description
Product Description
1. High rotation accuracy:
P4 high-speed angular contact bearings, equipped with high-precision collet nuts, can ensure the rotation accuracy of the electric spindle at high speed.
2. Good heat dissipation effect:
high-speed air cooling is used for heat dissipation, which is labor-saving and convenient. It does not need water pipes/sinks and water pumps, and it can be used directly by connecting to the inverter.
3. The grease is more lubricated:
the spindle adopts high temperature resistant grease lubricating oil that can withstand 200 degrees high temperature.
4. The product is more durable:
the body is made of high-quality stainless steel, which is smooth and not easy to rust, ensuring the stability of the spindle, CHINAMFG and durable, not easy to damage, and longer life.
Model | GDL150-40-12Z-12KW-ATC |
Gross weight | 50Kg |
Collet | BT40 |
frequency | 400Hz |
speed | 12000r |
rated power | 12KW |
voltage | 380V |
current | 25A |
Cooling type | Water cooling |
Our Advantages
More Details
1. One-piece casing:
high-hardness alloy casing, to ensure that the electric spindle maintains a stable working environment when working, and to ensure the product’s yield.
2. High-purity copper coil:
using high-quality high-purity copper coil, the oxygen content is not more than 0.02%, the total impurity content is not more than 0.05%, the surface is smooth, no oil stains, cracks and scars.
3. Front dust cover:
can effectively isolate the internal circuit short circuit caused by the entry of dust and waste water, and extend the service life of the spindle.
4. Spindle shaft core:
high durability shaft core is made of high hardness material, after vacuum heat treatment, through internal and external circular grinding, slow wire walking, mirror discharge and other processes.
Applications
Suitable for high-speed and high-precision milling, drilling and tapping of various metal and non-metal materials. The engraving materials include acrylic organic board, PVC board, wood board, density board, marble, fireproof board, rubber board, glass and so on.
If you have other engraving usage scenarios and engraving materials, please feel free to consult us, and we will be happy to answer you.
Precautions
1. The motorized spindle and the inverter should be used together. The specifications and parameter settings of the inverter should match the rated parameters of the motorized spindle. If the settings are not correct, the motorized spindle will be burned. 2. When clamping the tool on the electric spindle, the collet, nut, and inner taper hole must be cleaned to avoid affecting the accuracy. The tool holder must be greater than 15 mm when inserted into the collet.
3. The electric spindle must be preheated during daily processing. When the electric spindle reaches the processing speed, finish machining after 15-20 minutes of operation. It is advisable to stop the electric spindle for 2 hours every day to restore mechanical fatigue and prolong its service life.
4. It is strictly forbidden to knock the end cover of the electric spindle, and it is strictly forbidden to knock the collet and cutter head when unloading the tool. It is strictly forbidden to bump during transportation, storage and use, especially the shaft end.
5. The electric spindle uses air seal, and the air source must be used through an oil-water separator and a dry filter. The air pressure is 0.2-0.25MPA and the filtration accuracy is 5MM, otherwise the bearing will be damaged.
Company Profile
Lunyee Group focuses on the design, development, production and sales of industrial factory automation system solutions. Our main products include spindle motors, hub motors, AC motors, and DC motors. Spindle motors include water-cooled spindles, air-cooled spindles, and CHINAMFG spindles. This series of products are widely used in grinding machines, engraving machines, CNC drilling machines, laser engraving and advertising mini-character engraving.AC motors mainly include small AC gear motors and micro AC gear motors; DC motors mainly include brush DC motors and brushless DC motors. Our products have been exported to Europe, the United States, Russia, South Korea, Brazil, Japan, Canada and many other countries and regions.
We are very happy to serve dear customers and friends, welcome to consult at any time.
FAQ
Q: Are you a trading company or a manufacturer?
A: We are a motor manufacturer in China for 15 years.
Q: How to order?
A: Send us an inquiry → receive our quotation → negotiate details → confirm samples → CHINAMFG a contract/deposit → mass production → prepare a car → balance/delivery → further cooperation
Q: How about the sample order?
A: Our company provides sample gift service. After you contact us to place the sample order, after the formal order is placed, our company will refund the sample order fee.
Q:How long does it take for delivery, production and transportation?
A: The delivery time depends on the quantity you ordered. Usually 15-25 working days.
Q: My package is missing products. what can I do?
A: Please contact our support team, we will confirm your order with the package contents. We are sorry for bringing you inconvenience.
Q: How to confirm payment?
A: Our company accepts payment by T/T and PayPal. If you need other payment methods, please contact us in advance. Our company can accept a deposit of 30%-50%, and the balance can be paid before shipment.
If you have other questions, please feel free to contact us, we are happy to help you answer.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Online Support |
---|---|
Warranty: | 3 Months to 1 Year |
Logo Printing: | with Logo Printing |
Size: | Large |
Customized: | Customized |
Type: | CNC Spindle Motor |
Samples: |
US$ 4539.73/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
|
|
---|
How are servo motors used in CNC machines and other precision machining equipment?
Servo motors play a crucial role in CNC (Computer Numerical Control) machines and other precision machining equipment. They provide precise and dynamic control over the movement of various axes, enabling high-accuracy positioning, rapid speed changes, and smooth motion profiles. Here’s a detailed explanation of how servo motors are used in CNC machines and precision machining equipment:
1. Axis Control:
CNC machines typically have multiple axes, such as X, Y, and Z for linear movements, as well as rotary axes for rotational movements. Servo motors are employed to drive each axis, converting electrical signals from the CNC controller into mechanical motion. The position, velocity, and acceleration of the servo motors are precisely controlled to achieve accurate and repeatable positioning of the machine’s tool or workpiece.
2. Feedback and Closed-Loop Control:
Servo motors in CNC machines are equipped with feedback devices, such as encoders or resolvers, to provide real-time information about the motor’s actual position. This feedback is used in a closed-loop control system, where the CNC controller continuously compares the desired position with the actual position and adjusts the motor’s control signals accordingly. This closed-loop control ensures accurate positioning and compensates for any errors, such as mechanical backlash or load variations.
3. Rapid and Precise Speed Changes:
Servo motors offer excellent dynamic response, allowing CNC machines to achieve rapid and precise speed changes during machining operations. By adjusting the control signals to the servo motors, the CNC controller can smoothly accelerate or decelerate the machine’s axes, resulting in efficient machining processes and reduced cycle times.
4. Contouring and Path Tracing:
CNC machines often perform complex machining tasks, such as contouring or following intricate paths. Servo motors enable precise path tracing by accurately controlling the position and velocity of the machine’s tool along the programmed path. This capability is crucial for producing intricate shapes, smooth curves, and intricate details with high precision.
5. Spindle Control:
In addition to axis control, servo motors are also used to control the spindle in CNC machines. The spindle motor, typically a servo motor, rotates the cutting tool or workpiece at the desired speed. Servo control ensures precise speed and torque control, allowing for optimal cutting conditions and surface finish quality.
6. Tool Changers and Automatic Tool Compensation:
CNC machines often feature automatic tool changers to switch between different cutting tools during machining operations. Servo motors are utilized to precisely position the tool changer mechanism, enabling quick and accurate tool changes. Additionally, servo motors can be used for automatic tool compensation, adjusting the tool’s position or orientation to compensate for wear, tool length variations, or tool offsets.
7. Synchronized Motion and Multi-Axis Coordination:
Servo motors enable synchronized motion and coordination between multiple axes in CNC machines. By precisely controlling the servo motors on different axes, complex machining operations involving simultaneous movements can be achieved. This capability is vital for tasks such as 3D contouring, thread cutting, and multi-axis machining.
In summary, servo motors are integral components of CNC machines and precision machining equipment. They provide accurate and dynamic control over the machine’s axes, enabling high-precision positioning, rapid speed changes, contouring, spindle control, tool changers, and multi-axis coordination. The combination of servo motor technology and CNC control systems allows for precise, efficient, and versatile machining operations in various industries.
What is the significance of closed-loop control in servo motor operation?
Closed-loop control plays a significant role in the operation of servo motors. It involves continuously monitoring and adjusting the motor’s behavior based on feedback from sensors. The significance of closed-loop control in servo motor operation can be understood through the following points:
1. Accuracy and Precision:
Closed-loop control allows servo motors to achieve high levels of accuracy and precision in positioning and motion control. The feedback sensors, such as encoders or resolvers, provide real-time information about the motor’s actual position. This feedback is compared with the desired position, and any deviations are used to adjust the motor’s behavior. By continuously correcting for errors, closed-loop control ensures that the motor accurately reaches and maintains the desired position, resulting in precise control over the motor’s movements.
2. Stability and Repeatability:
Closed-loop control enhances the stability and repeatability of servo motor operation. The feedback information enables the control system to make continuous adjustments to the motor’s inputs, such as voltage or current, in order to minimize position errors. This corrective action helps stabilize the motor’s behavior, reducing oscillations and overshoot. As a result, the motor’s movements become more consistent and repeatable, which is crucial in applications where the same motion needs to be replicated accurately multiple times.
3. Compensation for Disturbances:
One of the key advantages of closed-loop control is its ability to compensate for disturbances or variations that may occur during motor operation. External factors, such as friction, load changes, or variations in the operating environment, can affect the motor’s performance and position accuracy. By continuously monitoring the actual position, closed-loop control can detect and respond to these disturbances, making the necessary adjustments to maintain the desired position. This compensation capability ensures that the motor remains on track despite external influences, leading to more reliable and consistent operation.
4. Improved Response Time:
Closed-loop control significantly improves the response time of servo motors. The feedback sensors provide real-time information about the motor’s actual position, which allows the control system to quickly detect any deviations from the desired position. Based on this feedback, the control system can adjust the motor’s inputs promptly, allowing for rapid corrections and precise control over the motor’s movements. The fast response time of closed-loop control is crucial in applications where dynamic and agile motion control is required, such as robotics or high-speed automation processes.
5. Adaptability to Changing Conditions:
Servo motors with closed-loop control are adaptable to changing conditions. The feedback information allows the control system to dynamically adjust the motor’s behavior based on real-time changes in the operating environment or task requirements. For example, if the load on the motor changes, the control system can respond by adjusting the motor’s inputs to maintain the desired position and compensate for the new load conditions. This adaptability ensures that the motor can perform optimally under varying conditions, enhancing its versatility and applicability in different industrial settings.
In summary, closed-loop control is of significant importance in servo motor operation. It enables servo motors to achieve high levels of accuracy, stability, and repeatability in position and motion control. By continuously monitoring the motor’s actual position and making adjustments based on feedback, closed-loop control compensates for disturbances, enhances response time, and adapts to changing conditions. These capabilities make closed-loop control essential for achieving precise and reliable operation of servo motors in various industrial applications.
What are the key advantages of using servo motors in industrial applications?
Servo motors offer several key advantages that make them highly beneficial for a wide range of industrial applications. Here are some of the main advantages of using servo motors:
1. Precise Positioning:
Servo motors excel at precise positioning control. They can accurately move to specific angles or positions with high repeatability. This level of precision is crucial in applications where accurate and consistent positioning is required, such as robotics, CNC machining, and assembly lines.
2. High Torque at Various Speeds:
Servo motors are designed to deliver high torque output across a range of speeds. They can generate significant torque even at low speeds, enabling efficient operation in applications that require both high torque and precise control, such as lifting heavy loads or performing intricate movements.
3. Fast Response Times:
Servo motors have fast response times, meaning they can quickly accelerate, decelerate, and change direction in response to control signals. This responsiveness is essential in applications where rapid and dynamic motion control is needed, such as industrial automation, robotics, and production line equipment.
4. Closed-Loop Control:
Servo motors operate in a closed-loop control system, where feedback from position sensors is continuously used to adjust the motor’s behavior. This feedback control mechanism enables accurate tracking of the desired position and compensates for any disturbances or variations that may occur during operation. It enhances the motor’s accuracy, stability, and performance.
5. Wide Range of Sizes and Power Ratings:
Servo motors are available in a wide range of sizes and power ratings, making them suitable for diverse industrial applications. Whether it’s a small motor for precision tasks or a large motor for heavy-duty operations, there are servo motor options to meet various requirements.
6. Energy Efficiency:
Servo motors are designed to be energy-efficient. They typically have high power density, which means they can deliver a significant amount of torque per unit of size and weight. This efficiency helps reduce power consumption, lowers operating costs, and contributes to a greener and more sustainable industrial environment.
7. Flexibility and Adaptability:
Due to their versatility, servo motors can be easily integrated into different systems and applications. They can be combined with various control systems, sensors, and communication protocols to provide seamless integration and compatibility with existing industrial setups. This flexibility allows for customized and scalable solutions tailored to specific industrial requirements.
8. Durability and Reliability:
Servo motors are known for their durability and reliability, even in demanding industrial environments. They are built to withstand harsh conditions such as high temperatures, vibrations, and dust. This robust construction ensures long-term operation and minimizes downtime, contributing to increased productivity and reduced maintenance costs.
In summary, the key advantages of using servo motors in industrial applications include precise positioning, high torque at various speeds, fast response times, closed-loop control for accuracy and stability, a wide range of sizes and power ratings, energy efficiency, flexibility, and durability. These advantages make servo motors highly valuable for industries that require precise motion control, such as robotics, manufacturing, automation, CNC machining, and many others.
editor by CX 2024-03-26