China Best Sales High Performance 100kw 5000rpm AC Servo Motor vacuum pump design

Product Description

Product Description

  AC Motor is a device that transforms the electrical energy of alternating current into mechanical energy. The AC Motor is mainly composed of an electromagnet winding or stator winding for generating magnetic field and a rotating armature or rotor. The motor is made by the phenomenon that the electric coil is forced to rotate in the magnetic field. AC motors are divided into 2 types: synchronous alternating current motor and induction motor.
      The stator windings of three-phase AC motors are basically 3 coils separated by 120 degrees, which are connected by triangle or star. When three-phase current is applied, a magnetic field is generated in each coil, and the 3 magnetic fields are combined to form a rotating magnetic field.
     High voltage ac motors are designed with the application of modern technology resulting in compact machines featuring excellent dynamic properties, meeting the most severe application in areas that include automation and process control. 
      Besides offering reliability and high performance, which will guarantee long operating periods without requiring any maintenance, the New high voltage ac motors present outstanding operating features, which include:

     •Wide speed variation range
     •Dimensions as per GB and IEC Standards
     •High efficiency
     •Low noise level
     •High moment of inertia
     •High capacity to dynamic loads
     •Rugged construction
    •High vibration resistance
    •Excellent commutation quality
 

Product Parameters

 

Product Name High Performance 100kW 5000rpm AC Servo Motor
Motor Type DC Motor,AC Motor,Stepper Motor,Asynchronous Motor ,Synchronous Motor
(Electric machinery)
Rotational Speed

Low Speed/Constant Speed/High Speed/Variable Speed

Stator Phase Number

Three-Phase/Single-Phase

Standard Features  •NEMA Premium Efficiency Level according to NEMA Y
•Three-phase, 50, 60 Hz
•Voltage: 3000 to 11000 V 
•Rated output: up to 12500 kw
•Number of poles: 2 ,4,6,8,10 or 12poles
•Frame sizes: 450 mm to 630mm
•Cast aluminium squirrel cage for rotor 
•Degree of protection: IP23 to IP54(Totally enclosed)
•Class insulation F with class (120ºC) temperature rise
•Grease nipples for frame 450 to 630MM
•Continuous Duty (S1)
•With thermal protection PTC140 ºC or PT100
•Larger diameter shafts for the highest overhung load ratings in the industry
•Oversized roller bearings for maximum load capacity
•Other optional features under request
AC Motor AC Motors can operate in high temperature, flammable and other environments, and do not need to clean the dirt of carbon brushes regularly, but it is difficult to control the speed, because it is necessary to control the frequency of AC motors (or use induction motors, increase internal resistance, reduce the motor speed at the same AC frequency. Speed, control the voltage will only affect the torque of the motor. The voltage of the general civil motor has 2 kinds, such as 110V and 220V, and there are 380V or 440V in industrial application.
Application AC Motors have higher working efficiency, no smoke, odor, no pollution to the environment, and less noise. Because of its series of advantages, it is widely used in industrial and agricultural production, transportation, national defense, commercial and household appliances, medical appliances and other fields.
For Example:
•Compressor
•Rubber mixer
•Fans and Pumps
•Air brower
•Coal mill and rolling mill
•Crushers
•Conveyor belts
•Centrifugal machines
•Lathe
•Hoist

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: High Speed
Number of Stator: Three-Phase
Species: Yjs Series
Rotor Structure: Winding Type
Casing Protection: Explosion-Proof Type
Customization:
Available

|

servo motor

What role does the controller play in the overall performance of a servo motor?

The controller plays a crucial role in the overall performance of a servo motor system. It is responsible for monitoring and regulating the motor’s operation to achieve the desired motion and maintain system stability. Let’s explore in detail the role of the controller in the performance of a servo motor:

1. Motion Control:

The controller is responsible for generating precise control signals that dictate the motor’s speed, torque, and position. It receives input commands from the user or higher-level control system and translates them into appropriate control signals for the servo motor. By accurately controlling the motor’s motion, the controller enables precise positioning, smooth acceleration and deceleration, and the ability to follow complex trajectories. The controller’s effectiveness in generating accurate and responsive control signals directly impacts the motor’s motion control capabilities.

2. Feedback Control:

The controller utilizes feedback from position sensors, such as encoders, to monitor the motor’s actual position, speed, and other parameters. It compares the desired motion profile with the actual motor behavior and continuously adjusts the control signals to minimize any deviations or errors. This closed-loop feedback control mechanism allows the controller to compensate for disturbances, variations in load conditions, and other factors that may affect the motor’s performance. By continuously monitoring and adjusting the control signals based on feedback, the controller helps maintain accurate and stable motor operation.

3. PID Control:

Many servo motor controllers employ Proportional-Integral-Derivative (PID) control algorithms to regulate the motor’s behavior. PID control calculates control signals based on the error between the desired setpoint and the actual motor response. The proportional term responds to the present error, the integral term accounts for accumulated past errors, and the derivative term considers the rate of change of the error. By tuning the PID parameters, the controller can achieve optimal performance in terms of response time, stability, and steady-state accuracy. Properly configured and tuned PID control greatly influences the servo motor’s ability to follow commands accurately and efficiently.

4. Trajectory Planning:

In applications requiring complex motion profiles or trajectories, the controller plays a vital role in trajectory planning. It determines the optimal path and speed profile for the motor to follow, taking into account constraints such as acceleration limits, jerk limits, and mechanical limitations. The controller generates the required control signals to achieve the desired trajectory, ensuring smooth and precise motion. Effective trajectory planning by the controller enhances the motor’s performance in applications that involve intricate or high-speed movements.

5. System Monitoring and Protection:

The controller monitors various parameters of the servo motor system, including temperature, current, voltage, and other diagnostic information. It incorporates protective measures to prevent damage or excessive stress on the motor. The controller can implement safety features such as overcurrent protection, over-temperature protection, and fault detection mechanisms. By actively monitoring and safeguarding the motor and the system, the controller helps prevent failures, prolongs the motor’s lifespan, and ensures safe and reliable operation.

6. Communication and Integration:

The controller facilitates communication and integration with other components or systems within the overall automation setup. It may support various communication protocols, such as Ethernet, CAN bus, or fieldbus protocols, enabling seamless integration with higher-level control systems, human-machine interfaces (HMIs), or other peripheral devices. The controller’s ability to efficiently exchange data and commands with other system components allows for coordinated and synchronized operation, enhancing the overall performance and functionality of the servo motor system.

In summary, the controller plays a vital role in the overall performance of a servo motor system. It enables precise motion control, utilizes feedback for closed-loop control, implements PID control algorithms, plans complex trajectories, monitors system parameters, and facilitates communication and integration. The controller’s capabilities and effectiveness directly impact the motor’s performance in terms of accuracy, responsiveness, stability, and overall system efficiency.

servo motor

Can you explain the concept of torque and speed in relation to servo motors?

Torque and speed are two essential parameters in understanding the performance characteristics of servo motors. Let’s explore these concepts in relation to servo motors:

Torque:

Torque refers to the rotational force produced by a servo motor. It determines the motor’s ability to generate rotational motion and overcome resistance or load. Torque is typically measured in units of force multiplied by distance, such as Nm (Newton-meter) or oz-in (ounce-inch).

The torque output of a servo motor is crucial in applications where the motor needs to move or control a load. The motor must provide enough torque to overcome the resistance or friction in the system and maintain the desired position or motion. Higher torque allows the motor to handle heavier loads or more challenging operating conditions.

It is important to note that the torque characteristics of a servo motor may vary depending on the speed or position of the motor. Manufacturers often provide torque-speed curves or torque-position curves, which illustrate the motor’s torque capabilities at different operating points. Understanding these curves helps in selecting a servo motor that can deliver the required torque for a specific application.

Speed:

Speed refers to the rotational velocity at which a servo motor operates. It indicates how fast the motor can rotate and how quickly it can achieve the desired position or motion. Speed is typically measured in units of revolutions per minute (RPM) or radians per second (rad/s).

The speed of a servo motor is crucial in applications that require rapid movements or high-speed operations. It determines the motor’s responsiveness and the system’s overall performance. Different servo motors have different speed capabilities, and the maximum achievable speed is often specified by the manufacturer.

It is worth noting that the speed of a servo motor may also affect its torque output. Some servo motors exhibit a phenomenon known as “speed-torque curve,” where the motor’s torque decreases as the speed increases. This behavior is influenced by factors such as motor design, winding resistance, and control algorithms. Understanding the speed-torque characteristics of a servo motor is important for selecting a motor that can meet the speed requirements of the application while maintaining sufficient torque.

Overall, torque and speed are interrelated parameters that determine the performance capabilities of a servo motor. The torque capability determines the motor’s ability to handle loads, while the speed capability determines how quickly the motor can achieve the desired motion. When selecting a servo motor, it is essential to consider both the torque and speed requirements of the application to ensure that the motor can deliver the desired performance.

servo motor

What is a servo motor, and how does it function in automation systems?

A servo motor is a type of motor specifically designed for precise control of angular or linear position, velocity, and acceleration. It is widely used in various automation systems where accurate motion control is required. Let’s explore the concept of servo motors and how they function in automation systems:

A servo motor consists of a motor, a position feedback device (such as an encoder or resolver), and a control system. The control system receives input signals, typically in the form of electrical pulses or analog signals, indicating the desired position or speed. Based on these signals and the feedback from the position sensor, the control system adjusts the motor’s operation to achieve the desired motion.

The functioning of a servo motor in an automation system involves the following steps:

  1. Signal Input: The automation system provides a control signal to the servo motor, indicating the desired position, speed, or other motion parameters. This signal can be generated by a human operator, a computer, a programmable logic controller (PLC), or other control devices.
  2. Feedback System: The servo motor incorporates a position feedback device, such as an encoder or resolver, which continuously monitors the motor’s actual position. This feedback information is sent back to the control system, allowing it to compare the actual position with the desired position specified by the input signal.
  3. Control System: The control system, typically housed within the servo motor or an external servo drive, receives the input signal and the feedback from the position sensor. It processes this information and generates the appropriate control signals to the motor.
  4. Motor Operation: Based on the control signals received from the control system, the servo motor adjusts its operation to achieve the desired motion. The control system varies the motor’s voltage, current, or frequency to control the motor’s speed, torque, or position accurately.
  5. Closed-Loop Control: Servo motors operate in a closed-loop control system. The feedback information from the position sensor allows the control system to continuously monitor and adjust the motor’s operation to minimize any deviation between the desired position and the actual position. This closed-loop control mechanism provides high accuracy, repeatability, and responsiveness in motion control applications.

One of the key advantages of servo motors in automation systems is their ability to provide precise and dynamic motion control. They can rapidly accelerate, decelerate, and change direction with high accuracy, allowing for intricate and complex movements. Servo motors are widely used in applications such as robotics, CNC machines, printing presses, packaging equipment, and automated manufacturing systems.

In summary, a servo motor is a specialized motor that enables accurate control of position, velocity, and acceleration in automation systems. Through the combination of a control system and a position feedback device, servo motors can precisely adjust their operation to achieve the desired motion. Their closed-loop control mechanism and high responsiveness make them an essential component in various applications requiring precise and dynamic motion control.

China Best Sales High Performance 100kw 5000rpm AC Servo Motor   vacuum pump design		China Best Sales High Performance 100kw 5000rpm AC Servo Motor   vacuum pump design
editor by CX 2024-03-07